Вплив дизельних транспортних засобів на біосферу
- Деталі
- Категорія: Зміст №5 2021
- Останнє оновлення: 02 листопада 2021
- Опубліковано: 30 листопада -0001
- Перегляди: 3671
Authors:
В. Волков, orcid.org/0000-0003-2202-3441Харківський національний автомобільно-дорожній університет, м. Харків, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Н. Внукова, orcid.org/0000-0002-4097-864X, Харківський національний автомобільно-дорожній університет, м. Харків, Україна, e-mail Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
І. Таран, orcid.org/0000-0002-3679-2519, Національний технічний університет «Дніпровська політехніка», м. Дніпро, Україна e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
О. Позднякова, orcid.org/0000-0002-7409-2839, Харківський національний автомобільно-дорожній університет, м. Харків, Україна, e-mail Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Т. Волкова, orcid.org/0000-0001-8546-4119, Харківський національний автомобільно-дорожній університет, м. Харків, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (5): 094 - 099
https://doi.org/10.33271/nvngu/2021-5/094
Abstract:
Мета. Визначення екологічних наслідків для клімату застосування біодизельного палива на транспортних засобах (ТЗ).
Методика. Заснована на розрахунку споживання природних ресурсів і емісії токсичних речовин за допомогою комп’ютерної програми – екологічний калькулятор.
Результати. Результати комплексної оцінки впливу на довкілля, а саме, витрати води, енергії, природних ресурсів і емісії парникових газів СО2, NOx для базових моделей тягачів VOLVO FM, FH, FE, FL, були розраховані при роботі на біодизельному паливі В0, В7, В30, В100 для різних стандартів EURO палива. Визначені позитивні й негативні фактори впливу на довкілля при використанні біопалив протягом усього життєвого циклу ТЗ. Встановлено, що незначне зменшення емісії СО2 при застосуванні типового сучасного біодизельного палива супроводжується суттєвим зростанням емісії NOx, витрат води та енергії при використанні біодизельного палива першого покоління. На прикладі ТЗ VOLVO FЕ проведено порівняльний аналіз впливу на оточуюче середовище біодизельного палива першого (В7, В30, В100) та другого покоління – гідроочищеної рослинної олії (HVO) – та встановлені однакові для них тенденції. Проаналізована можливість застосування біодизельних палив поряд з іншими заходами зменшення емісії СО2.
Наукова новизна. Обумовлена застосуванням кількісної комплексної оцінки впливу транспортних засобів на зміни клімату та споживання природних ресурсів при використанні біодизельного палива на прикладі тягачів VOLVO.
Практична значимість. Полягає у можливості прогнозування екологічних наслідків застосування різних біодизельних палив транспортними засобами.
Ключові слова: парниковий ефект, біодизельне паливо, життєвий цикл ТЗ, оксиди азоту
References.
1. Knoema (n.d.). World Data Atlas. Ukraine. Environment. Retrieved from https://knoema.com/atlas/Ukraine/topics/Environment.
2. Redziuk, А. M., & Klymenko, О. А. (2018). On the strategy of increasing efficiency of energy consumption in road transport. Avtoshliakhovyk Ukrayiny, 4(256), 2-10. https://doi.org/10.33868/0365-8392-2018-4-256-2-11.
3. Gritsuk, I., Pohorletskyi, D., Mateichyk, V., Symonenko, R., Tsiuman, M., Volodarets, M., …, & Sadovnyk, I. (2020). Improving the Processes of Thermal Preparation of an Automobile Engine with Petrol and Gas Supply Systems (Vehicle Engine with Petrol and LPG Supplying Systems). SAE Technical Paper, 2020-01-2031. https://doi.org/10.4271/2020-01-2031.
4. Taran, I., & Litvin, V. (2018). Determination of rational parameters for urban bus route with combined operating mode. Transport Problems, 13(4), 157-171. https://doi.org/10.20858/tp.2018.13.4.14.
5. Kozachenko, D., Dovbnia, M., Ochkasov, О., Serdiuk, V., Shepotenko, A., & Keršys, А. (2018). Rationale for Choosing the Type of Traction Rolling Stock for the Enterprise of Industrial Transport. Proceedings of 22 nd International Scientific Conference. Transport Means 2018, 991-995. Retrieved from https://transportmeans.ktu.edu/wp-content/uploads/sites/307/2018/02/Transport-means-II-A4-2018-09-25.pdf.
6. Taran, I. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 78-85.
7. Kutenev, V. F., Kozlov, А. V., Terenchenko, А. S., & Shiute, Yu. V. (n.d.). Challenging issues in limiting CO2 emissions from vehicles. Retrieved from. http://www.aae-press.ru/j0062/art016.htm.
8. Achinas, S., Horjus, J., Achinas, V., & Euverink, G. J. W. (2019). A PESTLE Analysis of Biofuels Energy Industry in Europe. Sustainability, 11, 5981. https://doi.org/10.3390/su11215981.
9. International Energy Agency (n.d.). Energy Technology Perspectives 2010. Scenarios and Strategies to 2050. https://doi.org/10.1787/energy_tech-2010-en.
10. Achinas, V., & Euverink, G. J. W. (2019). Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor. Energies, 2, 1040. https://doi.org/10.3390/en12061040.
11. Ghanimeh, S., Khalil, C. A., & Ibrahim, E. (2018). Anaerobic digestion of food waste with aerobic post-treatment: Effect of fruit and vegetable content. Waste Management and Research, 36, 965-974. https://doi.org/10.1177/0734242X18786397.
12. Cherubini, F., & Strømman, A. H. (2011). Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technology, 102(2), 437-51. https://doi.org/10.1016/j.biortech.2010.08.010.
13. Presser, С., Nazarian, A., & Millo, A. (2018). Laser-Driven calorimetry measurements of petroleum and biodiesel fuel. Fuel, 214, 656-666. https://doi.org/10.1016/j.fuel.2017.09.086.
14. Kuchkina, A. Yu., & Sushchik, N. N. (2014). Feedstocks, Methods and Perspectives of Biodiesel Production. Journal of Siberian Federal University. Biology, 1(7), 14-42.
15. Bonomi, A., Klein, B. C., Chagas, M. F., & Dias Souza, N. R. (2018). Technical Report Comparison of Biofuel Life Cycle Analysis Tools Phase 2, Part 1: FAME and HVO/HEFA. Campinas: IEA Bioenergy.
16. Campbell, J. E., & Block, E. (2010). Land-Use and Alternative Bioenergy Pathways for Waste Biomass. Environmental Science & Technology, 44, 8665-8669. https://doi.org/10.1021/es100681g.
17. Environmental Footprint Calculator (n.d.). Retrieved from https://www.volvotrucks.com/en-en/trucks/alternative-fuels/environmental-footprint.html.
18. Markov, V., Devyanin, S., & Zykov, S. (2016). Optimization of biofuel mixtures with rapeseed oil methyl ester and sunflower oil methyl ester additives. Transport na alternativnom toplive, 5(53), 12-31.
19. UNEP (2011). The Bioenergy and Water Nexus. Nairobi: Oeko-Institut and IEA Bioenergy. Retrieved from https://www.cbd.int/agriculture/2011-121/UNEP-WCMC2-sep11-en.pdf.
20. Naumov, V., Taran, I., Litvinova, Y., & Bauer, M. (2020). Optimizing resources of multimodal transport terminal for material flow service. Sustainability (Switzerland), 12(16), 6545. https://doi.org/10.3390/su12166545.
21. Sabraliev, N., Abzhapbarova, A., Nugymanova, G., Taran, I., & Zhanbirov, Zh. (2019). Modern aspects of modeling of transport routes in Kazakhstan. News of the National Academy of sciences of the Republic Kazakhstan, 2(434), 62-68. https://doi.org/10.32014/2019.2518-170X.39.
Наступні статті з поточного розділу:
- Інституційний менеджмент в інтернаціоналізації української вищої освіти - 02/11/2021 17:07
- Оцінка впливу пандемії COVID-19 на державні доходи: дослідження про індивідуальних платників податків Бангладеш - 02/11/2021 17:07
- Оцінювання ефективності соціальних інвестицій металургійних підприємств за декаплінг-підходом - 02/11/2021 17:07
- Дослідження динаміки інвестиційних процесів з урахуванням стохастичності кризових явищ у світовій і національній економіці - 02/11/2021 17:07
- Оцінка якості тривимірної хмари точок промислових будівель на основі зображень планової та перспективної зйомки БПЛА - 02/11/2021 17:07
- Інформаційно-вимірювальна система витрати газу на основі опрацювання сигналів за оцінками ентропії - 02/11/2021 17:07
- Еколого-економічне управління інноваційною діяльністю підприємств - 02/11/2021 17:07
- Удосконалення методології обґрунтування безпечних маршрутів транспортування небезпечних речовин і вантажів - 02/11/2021 17:07
- Вибір ін’єкційного розчину для шнекової технології захисту підземного простору від забруднення - 02/11/2021 17:07
- Обґрунтування критеріїв ефективності експлуатації геотермальних зондів у затоплених гірничих виробках - 02/11/2021 17:07
Попередні статті з поточного розділу:
- Поточний стан і прогноз викидів діоксиду сірки й пилу на теплоелектростанціях України - 02/11/2021 17:07
- Математичне моделювання хвильових процесів у двообвиткових трансформаторах з урахуванням основного магнітного потоку - 02/11/2021 17:07
- Моделювання промислової сонячної фотоелектричної станції з безтрансформаторною перетворювальною системою - 02/11/2021 17:07
- Визначення вертикальної динаміки типової конструкції критого вагона вітчизняного парку при використанні європейських візків Y25 - 02/11/2021 17:07
- Вимірювання пружних, пластичних і постійних часу для алюмінієвих армованих сплавів дисперсією M102 (AL–C–O) - 02/11/2021 17:07
- Застосування методів обробки сигналів до вібрацій при вибухових роботах у тунелях - 02/11/2021 17:07
- Підвищення чутливості вимірювання вмісту вологи в сирій нафті - 02/11/2021 17:07
- Закономірності формування максимальних навантажень на різцях і виконавчих органах вугледобувних машин - 02/11/2021 17:07
- Визначення стадій адгезії залізо-нікелевої руди на заводі Ferronikeli в місті Дренас - 02/11/2021 17:07
- Розрахунок коефіцієнту розкриву за методикою фінансово-математичних усереднених витрат - 02/11/2021 17:07