Визначення відстані між арочним кріпленням у гірничих виробках під кар’єром: тематичне дослідження на вугільній шахті Монг Дуонг (В’єтнам)

Рейтинг користувача:  / 0
ГіршийКращий 

Authors:


Тієн Трунг Ву*, orcid.org/0000-0002-3725-2127, Кафедра підземної розробки, Ханойський університет гірничої справи та геології, м. Ханой, Соціалістична Республіка В’єтнам, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Доан Вьєт Дао, orcid.org/0000-0002-5586-7993, Кафедра підземного та гірничого будівництва, Ханойський університет гірничої справи та геології, м. Ханой, Соціалістична Республіка В’єтнам

* Автор-кореспондент e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (3): 039 - 045

https://doi.org/10.33271/nvngu/2023-3/039



Abstract:



Мета.
У даний час у вугільному басейні Куангнінь зростає гірничодобувна діяльність на кар’єрах. З цією метою готують і впорядковують шахтні виробки. Після підготовки шахтних виробок їх в основному підтримують рамним арочним кріпленням. Статистика показує, що близько 85 % конструкцій виробок на підземних вугільних шахтах у Куангнінь підтримуються металевим арочним кріпленням зі спецпрофілю СВП. Мета даного дослідження – розрахувати та обґрунтувати прийнятну відстань між арочним кріпленням для виробок, що знаходяться під кар’єром, щоб забезпечити їх стабільність і безпеку експлуатації.


Методика.
У цьому дослідженні використовувався чисельний метод моделювання. На основі програмного забезпечення Phase2 і геологічних умов шахти автори створили імітаційну модель, щоб визначити тиск, що діє на виробку, і вибрати прийнятну відстань між рамами.


Результати.
У ході моделювання розглядалися різні відстані між металевим арочним кріпленням, ураховуючи структуру гірничої маси під розрізом № 790 на вугільній шахті Монг Дуонг, а також досліджувалися внутрішні напруження в рамній конструкції з металевих арок спецпрофілю СВП для проведення гірничих виробок з однією і двома коліями. На основі результатів дії внутрішніх сил у металевому рамному кріпленні була обрана прийнятна відстань між металевими арками СВП-22, що дорівнює 0,7 м для виробки з однією колією і СВП-27, що дорівнює 0,7 м для виробки із двома коліями.


Наукова новизна.
На основі програмного забезпечення Phase2 автори розробили імітаційну модель для гірничих виробок, які проходять пластом L7 на Західній стороні вугільної шахти Монг Дуонг, що дозволило проаналізувати та описати стан масиву гірських порід. У даному дослідженні застосовується чисельний метод моделювання для симуляції й визначення згинальних моментів та осьових сил у гірничих виробках з однією та двома коліями при різних відстанях між рамами. Виходячи з результатів розрахунку тиску на вироблення, автори обрали прийнятну відстань між рамами для відповідних виробок.


Практична значимість.
Результати дослідження використовуються як основа для впровадження у виробництво на вугільній шахті Монг Дуонг. На основі розрахунку тиску, що діє на виробки пласта L7 на Західній стороні під розрізом № 790, була визначена відстань між металевим арочним кріпленням, на основі якої був розроблений план підтримки виробок. Ці результати дослідження також стануть основою для розгляду та впровадження іншими шахтами з аналогічними геологічними умовами у вугільному басейні Куангнінь.


Ключові слова:
шахтні виробки, металеве арочне кріплення, кар’єр, вугільна шахта Монг Дуонг

References.


1. Nguyen, P. M. V., Marek, R., & Hoang, D. V. (2020). Analysis of behaviour of the steel arch support in the geological and mining conditions of the Cam Pha coal basin, Vietnam. Archive of Mining Science, 65(3), 551-567. https://doi.org/10.24425/ams.2020.134134.

2. Do, N. A., Daniel, D., Dinh, V. D., Tran, T. T., Dao, V. C., Dao, V. D., & Nguyen, P. N. (2019). Behavior of Noncircular Tunnels Excavated in Stratified Rock Masses – Case of Underground Coal Mines. Journal of Rock Mechanics and Geotechnical Engineering, 11(1), 99-110. https://doi.org/10.1016/j.jrmge.2018.05.005.

3. Ozdogan, M. V., Yenice, H., Gonen, A., & Karakus, D. (2017). Optimal Support Spacing for Steel Sets: Omerler Underground Coal Mine in Western Turkey. International Journal of Geomechanics, 18(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001069.

4. Dyczko, A. (2007). Thin coal seams, their role in the reserve base of Poland. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 81-87. https://doi.org/10.1201/noe0415436700.ch10.

5. Ashimova, A. A., Bascetin, A., Bek, A. A., Nurpeisova, M. B., & Yes­temesov, Z. A. (2022). Creation of efficient technologies processing of man-made raw materials. Engineering Journal of Satbayev University, 144(1), 37-42. https://doi.org/10.51301/ejsu.2022.i1.06.

6. Do, T. M., Do, N. A., & Vo, T. H. (2022). Numerical analysis of the tunnel uplift behavior subjected to seismic loading. Journal of Mining and Earth Sciences, 63(3), 1-9. https://doi.org/10.46326/JMES.2022.63(3a).02.

7. Vo, T. H., Dang, V. K., Do, N. A., & Do, N. T. (2022). Study on the stability of rock mass around large underground cavern based on numerical analysis: A case study in the Cai Mep project. Journal of Mining and Earth Sciences, 63(3), 50-58. https://doi.org/10.46326/JMES.2022.63(3a).06.

8. Vu, T. T. (2022). Solutions to prevent face spall and roof falling in fully mechanized longwall at underground mines, Vietnam. Mining of Mineral Deposits, 16(1), 127-134. https://doi.org/10.33271/mining16.01.127.

9. Majcherczyk, T., & Niedbalski, Z. (2010). Numerical modeling used for designing of coal mine roadway support. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 77-82. https://doi.org/10.1201/b11329-14.

10. Wojciech, M. (2020). Powered support in dynamic load conditions – numerical analysis. Archive of Mining Science, 65(3), 453-468. https://doi.org/10.24425/ams.2020.134129.

11. Matayev, A. K., Lozynskyi, V. H., Musin, A., Abdrashev, R. M., Kuantay, A. S., & Kuandykova, A. N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57-63, https://doi.org/10.33271/nvngu/2021-3/057.

12. Hou, C. J. (2017). Research on key technology of surrounding rock control in deep roadway. Journal of China University of Mining and Technology, 46(05), 970-978. https://doi.org/10.1155/2020/8857873.

13. Sakhno, I., Liashok, Ia., Sakhno, S., & Isaienkov, O. (2022). Method for controlling the floor heave in mine roadways of underground coal mines. Mining of Mineral Deposits, 16(4), 1-10. https://doi.org/10.33271/mining16.04.001.

14. Zhang, C., Han, K., Fang, Q., & Zhang, D. (2014). Functional catastrophe analysis of collapse mechanisms for deep tunnels based on the Hoek-Brown failure criterion. Journal of Zhejiang University-SCIENCE A, 15(9), 723-731. https://doi.org/10.1631/jzus.A1400014.

15. Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of Roof Bolting as an Element of the Project of the Introduction of Roof Bolting in Polish Coal Mines-Case Study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095.

16. Jiao, Y. Y., Song, L., Wang, X. Z., & Adoko, A. C. (2013). Improvement of the U-shaped steel sets for supporting the roadways in loose thick coal seam. International Journal of Rock Mechanics and Mining Sciences, (60), 19-25. https://doi.org/10.1016/j.ijrmms.2012.12.038.

17. Zhao, Y., Liu, N., Zheng, X., & Zhang, N. (2015). Mechanical model for controlling floor heave in deep roadways with U-shaped steel closed support. International Journal of Mining Science and Technology, 25(5), 713-720. https://doi.org/10.1016/j.ijmst.2015.07.003.

18. Dao, V. D., Zhao, H. C., Cao, J. T., Chen, Y., & Wang, M. (2018). Control Technology for Soft Rock Roadway in Inclined Coal Seam: a Case Study in Nui Beo Mine, Quang Ninh, Viet Nam. Internationa Journal of GEOMATE, 14(43), 175-182.

19. Dao, V. D., Xia, B., & Dinh, V. D. (2019). Control technology for coal roadway with mudstone interlayer in Nui Beo coal mine. Geomate Journal, 17(60), 259-266.

20. Krykovskyi, O., Krykovska, V., & Skipochka, S. (2021). Interaction of rock-bolt supports while weak rock reinforcing by means of injection rock bolts. Mining of Mineral Deposits, 15(4), 8-14. https://doi.org/10.33271/mining15.04.008.

21. Tian, C. D., & Bai, H. B. (2015). Impact Analysis of Roadway Size and Layout on Stability of Surrounding Rock. Safety in Coal Mines. https://doi.org/10.13347/j.cnki.mkaq.2015.08.064.

22. Vu, T. T., & Dao, V. D. (2022). Assessing the impact of underground working (tunneling) in the II section of Seam 14 on surface construction works at Ha Lam Coal Mine (Vietnam). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 39-44. https://doi.org/10.33271/nvngu/2022-4/039.

23. Vu, T. T., & Do, S. A. (2023). Determination of the rock mass displacement zone by numerical modeling method when exploiting the longwall at the Nui Beo Coal Mine, Vietnam. Mining of Mineral Deposits, 17(1), 59-66. https://doi.org/10.33271/mining17.01.059.

24. Baykenzhin, M., Asanova, Z., Rashid, Z., Kasimov, A., Ivadilinova, D., & Zhunis, G. (2022). Modeling the influence of rolled profile strengtheners on the arch support load-bearing capacity. Mining of Mineral Deposits, 16(1), 84-91. https://doi.org/10.33271/mining16.01.084.

25. Snuparek, R., & Konecny, P. (2010). Stability of roadways in coalmines alias rock mechanics in practice. Journal of Rock Mechanics and Geotechnical Engineering, 2(3), 281-288. https://doi.org/10.3724/SP.J.1235.2010.00281.

26. Pham, D. H., Le, T. D., & Nguyen, V. Q. (2020). Safe Exploitation Solution and Reduction of Reso urces Loss for the L7 Seam at the West Wing Area of the 790 Open Pit Site of the Mong Duong Coal Mine. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 20(1), 231-238. https://doi.org/10.29227/IM-2020-02-28.

27. Duong, D. H., Dao, H. Q., Turek, M., & Koteras, A. (2019). The status and prospect of mining technology in Vietnam underground coal mines. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 21(2), 146-154. https://doi.org/10.29227/IM-2019-02-68.

28. Yun, L., Helin, Z., Xiao, H., Yuhong, L., Jiufeng, W., et al. (2005). Pactical handbook of the newest regulations and general techniques for mining works. Jilin Electronic Publishing House. ISBN: 7-900359-46-6/D·6.

 

Наступні статті з поточного розділу:

Відвідувачі

6321576
Сьогодні
За місяць
Всього
2586
56768
6321576

Гостьова книга

Якщо у вас є питання, побажання або пропозиції, ви можете написати їх у нашій «Гостьовій книзі»

Реєстраційні дані

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зареєстровано у Міністерстві юстиції України.
Реєстраційний номер КВ № 17742-6592ПР від 27.04.2011.

Контакти

49005, м. Дніпро, пр. Д. Яворницького, 19, корп. 3, к. 24 а
Тел.: +38 (056) 746 32 79.
e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Ви тут: Головна Архів журналу за випусками 2023 Зміст №3 2023 Визначення відстані між арочним кріпленням у гірничих виробках під кар’єром: тематичне дослідження на вугільній шахті Монг Дуонг (В’єтнам)