Evaluation of coal mines’ rock mass gas permeability in the equivalent stress zone

User Rating:  / 0
PoorBest 

Authors:


O.M.Shahsenko, orcid.org/0000-0002-7012-6157, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

V.A.Cherednyk, orcid.org/0000-0001-7330-1822, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

N.V.Khoziaikina*, orcid.org/0000-0002-4747-3919, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

S.M.Hapieiev, orcid.org/0000-0003-0203-7424, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

* Correspondent author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (5): 060 - 065

https://doi.org/10.33271/nvngu/2023-5/060



Abstract:



Purpose.
Based on a comparative analysis of the internal mechanism of shape change of rock samples, which were loaded in specified deformations mode, and geomechanical and gas-dynamic processes in coal mass, to establish a causal link between these phenomena. To qualitatively characterise their gas permeability as a function of the rock’s volume expansion. To justify the possibility of using a full “stress-strain” diagram as a technogenic methane deposit formation model and its spatial localisation.


Methodology.
Theoretical research is based on using the solid mechanic constitutive principles and results of studying the rock samples failure in the mode of specified strains.


Findings.
The ability to use a full “stress-strain” diagram for detecting and localising methane reservoirs during the coal seams excavation was proved during the research. It was found that the compaction threshold coincides with the bearing pressure maximum in front of the longwall face. This area corresponds to the rock mass with minimal porosity and minimal filtration, which allows considering it as an envelope of an artificial gas deposit. Regularities that connect the three-dimensional equivalent stress state with the final gas permeability of the gas-saturated coal mass were obtained. These data allow creating a predictive numerical geomechanical model of methane migration paths.


Originality.
The ability to use a full “stress-strain” diagram in the controlled strain mode for numerical modelling of gas permeability of a methane-saturated coal mass during the mining of coal seams and the determination of technogenic gas deposit boundaries are justified. Dependences of the current and final gas permeability on the rock’s mechanical characteristics in a post-peak strain state are obtained.


Practical value.
Functional dependencies based on geomechanical models are obtained that allow the identification and localisation of technogenic methane reservoirs in mines during coal seam excavation, with subsequent utilisation of the extracted gas. Furthermore, methane removal enhances mining safety by reducing the risk of gas dynamic phenomena while decreasing gas emissions into the atmosphere contributes to reducing the greenhouse effect.



Keywords:
coal mine, post-peak strain state, equivalent stress, gas permeability, methane reservoir, technogenic gas deposit

References.


1. Skypochka, S. Y., & Palamarchuk, T. A. (2015). Interdependence between methane phase states and gas-content in the coal strata. Geo-Technical Mechanics, 120, 245–255. ISSN 2309-6004.

2. Lukynov, V. V., Honcharenko, V. A., & Suvorov, D. A. (2010). Generation of methane by coal under influence of technogenic and natural tectonic processes in a mountain range. Geotechnical Mechanics, 88,130-140. Retrieved from http://dspace.nbuv.gov.ua/handle/ 123456789/33482.

3. Perepelytsa, V. H., & Shevelev, H. A. (2010). Peculiarities of the manifestation of friction forces at the motion of various media and flows. Geotechnical Mechanics, 4, 50-65. ISSN 1025-6415.

4. Bokyi, B. V., Filimonov, P. E., & Irisov, S. H. (2012). Study of gas flow physics to surface degassing wells. Coal of Ukraine, 5, 26-30. Retrieved from http://nbuv.gov.ua/UJRN/ugukr_2012_5_7 .

5. Zviahylskyi, E. L., Bokyi, B. V., & Kasymov, O. Y. (2011). Extraction of methane from coal deposits of Donbass. Donetsk: Noulidzh, Donetsk, 149. ISBN 978-617-579-250-6.

6. Sofiyskiy, C. C., Silin, D. P., Agaiev, R. A., & Vlasenko, V. V. (2013). Complex exhaust of gas-coal deposit with use of hydrodynamic influence method. Coal of Ukraine, 2, 48-51. Retrieved from http://nbuv.gov.ua/UJRN/ugukr_2013_2_11.

7. Antoshchenko, N. Y., Okalelov, V. N., Pavlov, V. Y., Podlypenskaia, A. E., & Bubunents, Yu. V. (2013). Formation of the dynamics of gas release from the undermined massif during the development of gas-bearing coal seams: monograph. Alchevsk: DonSTU, 221. ISBN 978-966-310-320-4.

8. Antoshchenko, N. Y., Kulakova, S. Y., & Chepurnaia, L. A. (2012). The approach of evaluating the possible gas release from the rocks of the roof at working off coal seams. Physical and technical problems of mining, 15, 118-130. ISBN 966-02-2693-4.

9. Babyiuk, V. H., Dotsenko, O. H., & Yvanova, V. S. (2013, 10). Simulation of the compaction process of collapsed rocks in time. Materials of international conference “Ukrainian Mining Forum, 2, 206-214. Dnipropetrovsk. National Mining University. Retrieved from http://ir.nmu.org.ua/handle/123456789/150296.

10. Shashenko, O. M., Cherednyk, V. A., Khoziaikina, N. V., & Shashenko, D. O. (2021). Phisical prerequisites for gas permeability simulation of mined rock mass. Jornal of Donetsk Mining Institute, 2(49), 78-84. https://doi.org/10.31474 /1999-981X-2021-2-78-84.

11. Sdvyzhkova, O., Golovko, Y., Dubytska, M., & Klymenko, D. (2016). Studying a crack initiation in terms of elastic oscillations in stress strain rock mass. Mining of Mineral Deposits, 10(2), 72-77. https://doi.org/10.15407/mining10.02.072.

 

Visitors

6318982
Today
This Month
All days
2650
54174
6318982

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2023 Content №5 2023 Evaluation of coal mines’ rock mass gas permeability in the equivalent stress zone