Development of a clustering algorithm for parameters of explosive objects based on a comprehensive indicator

User Rating:  / 0
PoorBest 

Authors:


O. Laktionov*, orcid.org/0000-0002-5230-524X, National University “Yuri Kondratyuk Poltava Polytechnic” Poltava, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

A. Yanko, orcid.org/0000-0003-2876-9316, National University “Yuri Kondratyuk Poltava Polytechnic” Poltava, Ukraine, e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

N. Pedchenko, orcid.org/0000-0002-0018-4482, National University “Yuri Kondratyuk Poltava Polytechnic” Poltava, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2025, (4): 160 - 167

https://doi.org/10.33271/nvngu/2025-4/160



Abstract:



Purpose.
To enhance the efficiency of clustering parameters of explosive objects through the development of hybrid clustering elements.


Methodology.
A classifier for explosive objects based on a comprehensive indicator, serving as the main principle for classifier improvement, was developed using mathematical modeling. Data processing was carried out using the Python programming language and scikit-learn libraries. The research methodology involves grouping explosive objects into two clusters with the aim of improving the existing algorithms for detecting explosive objects.


Findings.
The proposed comprehensive indicator demonstrates a standard deviation 8.2 % less than the existing one. The improved clustering algorithm exhibits Davis-Bouldin index values of 0.517 and 0.525, while the existing ones show 0.572 and 0.572, respectively. This indicates that the output estimations of the new algorithm are less susceptible to noise, which enhances clustering quality and reduces the number of errors during practical application.


Originality.
A parameter clusterer for explosive objects is proposed which, unlike the existing ones, incorporates complex estimates built on the basis of a linear model with combined parameters as input data.


Practical value.
The practical significance of the proposed solution lies in the fact that improving existing algorithms for detecting explosive objects will increase the efficiency of computer vision in solving reconnaissance and demining tasks. The proposed solutions can be used as an addition to existing approaches for monitoring and managing national security to prevent emergencies.



Keywords:
linear model, parameter clusterer, explosive object, computer vision, artificial intelligence

References.


1. Onyshchenko, S., Bilko, S., Yanko, A., & Sivitska, S. (2023). Business Information Security. In V. Onyshchenko, G. Mammadova, S. Sivitska, & A. Gasimov (Eds.). Proceedings of the 4 th International Conference on Building Innovations. ICBI 2022. Lecture Notes in Civil Engineering, 299, 769-778. Springer, Cham. https://doi.org/10.1007/978-3-031-17385-1_65

2. Cascavilla, G., Tamburri, D. A., Leotta, F., Mecella, M., & Van Den Heuvel, W. (2023). Counter-terrorism in cyber-physical spaces: Best practices and technologies from the state of the art. Information and Software Technology, 107260. https://doi.org/10.1016/j.infsof.2023.107260

3. Rezaei, H., & Daneshpour, N. (2023). Mixed data clustering based on a number of similar features. Pattern Recognition, 109815. https://doi.org/10.1016/j.patcog.2023.109815

4. Li, L., Lyu, X., Liang, S., & Liu, Z. (2023). Application of fluorescence sensing technology in trace detection of explosives. Dyes and Pigments, 220, 111651. https://doi.org/10.1016/j.dyepig.2023.111651

5. Denny, J. W., Dickinson, A. S., & Langdon, G. S. (2021). Defining blast loading ‘zones of relevance’ for primary blast injury research: A consensus of injury criteria for idealised explosive scenarios. Medical Engineering & Physics, 93, 83-92. https://doi.org/10.1016/j.medengphy.2021.05.014

6. Yanko, A., Krasnobayev, V., & Martynenko, A. (2023). Influence of the number system in residual classes on the fault tolerance of the computer system. Radioelectronic and Computer Systems, (3), 159-172. https://doi.org/10.32620/reks.2023.3.13

7. Hlushko, А. D. (2013). Directions of Efficiency of State Regulatory Policy in Ukraine. World Applied Sciences Journal. Pakistan: International Digital Organization for Scientific Information, 27(4), 448-453. Retrieved from https://idosi.org/wasj/wasj27(4)13/6.pdf

8. Elbasuney, S., Mahmoud, A., & El-Sharkawy, Y. H. (2023). Novel molecular laser-induced photoluminscence signature with hyperspectral imaging for instant and remote detection of trace explosive materials. Talanta, 24978. https://doi.org/10.1016/j.talanta.2023.124978

9. Shefer, O., Laktionov, O., Pents, V., Hlushko, A., & Kuchuk, N. (2024). Practical principles of integrating artificial intelligence into the technology of regional security predicting. Advanced Information Systems, 8(1), 86-93. https://doi.org/10.20998/2522-9052.2024.1.11

10.      Wang, H.-Y., Wang, J.-S., & Wang, G. (2023). Multi-fuzzy clustering validity index ensemble: A Dempster-Shafer theory-based parallel and series fusion. Egyptian Informatics Journal, 24(4), 100417. https://doi.org/10.1016/j.eij.2023.100417

11.      Kaliukh, I., Dunin, V., Marienkov, M., Trofymchuk, O., & Kurash, S. (2023). Peculiarities of Applying the Risk Theory and Numerical Modeling to Determine the Resource of Buildings in a Zone of Influence of Military Actions. Cybernetics and Systems Analysis. https://doi.org/10.1007/s10559-023-00596-w

12.      Ma, C., Zhuo, L., Li, J., Zhang, Y., & Zhang, J. (2023). Occluded prohibited object detection in X-ray images with global Context-aware Multi-Scale feature Aggregation. Neurocomputing, 519, 1-16. https://doi.org/10.1016/j.neucom.2022.11.034

13.      Shan, Y., Li, S., Li, F., Cui, Y., Li, S., Chen, M., & He, X. (2023). Fuzzy self-consistent clustering ensemble fx. Applied Soft Computing, 111151. https://doi.org/10.1016/j.asoc.2023.111151

14.      Wang, H., Wang, Q., Miao, Q., & Ma, X. (2023). Joint learning of data recovering and graph contrastive denoising for incomplete multi-view clustering. Information Fusion, 102155. https://doi.org/10.1016/j.inffus.2023.102155

15.      Kniazieva, N., Kotlyk, S., & Kalchenko, A. (2019). Method of Assessment and Improvement the Quality of Multimedia Services. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). IEEE. https://doi.org/10.1109/picst47496.2019.9061492

16.      Onyshchenko, S., Haitan, O., Yanko, A., Zdorenko, Yu., & Rudenko, O. (2024). Method for detection of the modified DDoS cyber attacks on a web resource of an Information and Telecommunication Network based on the use of intelligent systems. Modern Data Science Technologies Workshop (MoDaST 2024), Lviv, Ukraine, May 31–June 1, 2024, (pp. 219-235). Retrieved from https://ceur-ws.org/Vol-3723/paper12.pdf

17.      Kampmeier, M., van der Lee, E. M., Wichert, U., & Greinert, J. (2020). Exploration of the munition dumpsite Kolberger Heide in Kiel Bay, Germany: Example for a standardised hydroacoustic and optic monitoring approach. Continental Shelf Research, 198, 104108. https://doi.org/10.1016/j.csr.2020.104108

18.      Bespalko, R., Hutsul, T., Kazimir, I., & Myronchuk, K. (2023). Modern approaches to assessing the priority of humanitarian demining. Technical Sciences and Technologies, 1(31), 146-157. https://doi.org/10.25140/2411-5363-2023-1(31)-146-157

19.      Kotsiuruba, V. І., Krivtsun, V. І., Miroshnichenko, O. V., & Solodeeva, L. V. (2022). Problem formulation of the creation of prospective remote-controlled demining complexes on the base of the results analysis of combat operations in Ukraine. Collection of scientific works of the Military Institute of Kyiv National Taras Shevchenko University, (76), 16-27. https://doi.org/10.17721/2519-481x/2022/76-02

20.      Sowmiya, N., Gupta, N. S., Natarajan, E., Valarmathi, B., Elamvazuthi, I., Parasuraman, S., …, & Abraham Gnanamuthu, E. M. (2022). COIN: Correlation Index-Based Similarity Measure for Clustering Categorical Data. Mathematical Problems in Engineering, 2022, 1-12. https://doi.org/10.1155/2022/4414784

21.      Koretska, I., & Zinchenko, T. (2018). Evaluation of research samples by nonlinear quality criteria. Vsesvitnia nauka u 2018 rotsi, 2226.

22.      Yin, H., Aryani, A., Petrie, S., Nambissan, A., Astudillo, A., & Cao, S. (2024). A Rapid Review of Clustering Algorithms/Hui Yin, et al. arXiv.org. https://doi.org/10.48550/arXiv.2401.07389

23.      Land Mines Detection (d. b.). Kaggle: Your Machine Learning and Data Science Community. Retrieved from https://www.kaggle.com/datasets/ritwikb3/land-mines-detection

24.      Müller, A. C., & Guido, S. (2018). Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, Incorporated.

25.      Davies_bouldin_score. scikit-learn. Retrieved from https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.davies_bouldin_score.html

26.      Silhouette_score. scikit-learn. Retrieved from https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.silhouette_score.html

27.      Zhao, H. (2022). Design and implementation of an improved K-Means clustering algorithm. Journal of Mobile Information Systems, 6, 1-10. https://doi.org/10.1155/2022/6041484

28.      Laktionov, O., Yanko, A., & Pedchenko, N. (2024). Identification of air targets using a hybrid clustering algorithm. Eastern-European Journal of Enterprise Technologies, 5(4(131), 89-95. https://doi.org/10.15587/1729-4061.2024.314289

 

Visitors

12625721
Today
This Month
All days
1590
358897
12625721

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (066) 379 72 44.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2025 Content №4 2025 Development of a clustering algorithm for parameters of explosive objects based on a comprehensive indicator