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MINERAL RESOURCE ASSESSMENT THROUGH GEOSTATISTICAL 
ANALYSIS IN A PHOSPHATE DEPOSIT

Purpose. The selection of an appropriate variographic model is crucial in geostatistics to obtain accurate estimates of mineral 
reserves. The aim of this work is to develop a reserve estimation tool using a geostatistical approach.

Methodology. The geostatistical approach is based on selecting the most representative variographic models for the studied 
variables. The model selection is done by applying a crossvalidation procedure leaveoneout (LOOCV). LOOCV is a resampling 
technique used in statistical analysis and machine learning to estimate the generalization error of a model and compare the perfor
mance of different models. The studied variables are then estimated using ordinary kriging.

Findings. The application of the proposed approach has resulted in satisfactory results in terms of dispersion of grades and 
thicknesses of mineralized layers in a phosphate deposit. To evaluate the quality of the adjustment models obtained, efficiency 
factors such as NashSutcliffe, and RMSE (Root Mean Square Error), were employed. These factors provide quantitative mea
sures of the agreement between the observed and predicted values. The NSE (NashSutcliffe efficiency) and RMSE (root mean 
square error) values of 0.572 and 6.599, respectively, indicate a better fit and greater accuracy of the adjustment models. The ac
curacy and efficiency criteria of the studied variables have acceptable values, with a mean square error (MSE) of 1.54 ∙ 10-7.

Originality. The combination of the least squares and LOOCV methods in the geostatistical analysis leads to improved estima
tion precision, greater reliability in representing the spatial variability of the parameters, and enhanced confidence in the validity 
of the adjustment models.

Practical value. The development of a computer code for this geostatistical approach provides a practical tool for decisionmakers 
to use in the management and exploitation of mining sites. Overall, this study has contributed to the advancement of geostatistical 
techniques and their application in the mining industry.

Keywords: Bled el Hadba deposit, cross validation (LOOCV), geostatistics, kriging, mineral reserves

Introduction. A mining project is a complex system in
volving any geological, geotechnical, metallurgical, mining, 
environmental, economic, legal and social variables. All these 
variables must be estimated in order to provide a database for 
evaluating the mining project [1].

The success of a mining project depends on accurately rec
ognizing the subsoil, which involves managing the risks of 
geological uncertainty. However, accurately estimating the 
grades of minerals within a deposit is crucial in the mining in
dustry and is used in several stages of mining, from exploration 
to exploitation.

Resource estimation is an essential step in feasibility studies 
and mine planning. Although advanced methodologies exist, 
they may not be suitable for every complex geological environ
ment. Various researchers have proposed grade prediction 
models using techniques such as inverse distance weighing, 
kriging, and stochastic simulation [2]. Nevertheless, selecting 
the appropriate methodology for resource estimation in a min
ing project depends on various factors such as the complexity 
of the geological environment, data availability, and the level of 
accuracy required. In any case, the accuracy and reliability of 
the grade estimates are critical in determining the economic 
feasibility of a mining project, and therefore, the selection of 
the appropriate methodology must be carefully evaluated.

Detailed and extensive exploration operations are required 
to obtain geological models, which are used to accurately de
scribe the ore body and estimate mineral reserves [3].

The assessment of mineral resources often requires the use 
of quantitative approaches, especially in creating a geological 
model. This model serves as the foundation for all mining ac
tivities such as mine planning, design, production scheduling, 
and development. It also plays a significant role in investment 
decisions [4].

In the present study, predictive data mining algorithms 
were applied to the Bled El Hadba deposit (Eastern Algeria) 
[5], to predict the probability of encountering ore in estima
tion maps, and to estimate the mineral reserves of the main 
layer of phosphate ore (the median).

Previous studies on the Bled El Hadba deposit showed sig
nificant differences in reserve estimation results. The first 
study estimated reserves of approximately 103 million tons, 
while the second study estimated reserves of around 133.6 mil
lion tons for the same site.

The aim of this article is to develop a reserve estimation 
tool using a geostatistical approach [6], to improve the quality 
of the estimation [7]. The tool includes an adjustment and a 
validation step of variographic models, which is a crucial phase 
integrated into the developed tool structure. A leaveoneout 
(LOOCV) crossvalidation procedure [8] is used to system
atize the treatment of variographic models and to select the 
most representative variograms.
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Leaveoneout crossvalidation (LOOCV) is a resampling 
technique used in statistical analysis and machine learning for 
model selection and validation [8]. The LOOCV method in
volves splitting the dataset into training and testing subsets, 
where in each iteration of the process, one sample from the da
taset is selected as the testing subset, and the remaining samples 
are used as the training set. The model is trained on the training 
set and evaluated on the testing set, and the process is repeated 
for all samples in the dataset [8]. This results in a set of perfor
mance measures that can be averaged to give an estimate of the 
model’s accuracy [9]. The LOOCV method is useful for esti
mating the generalization error of a model, which is the expect
ed error when the model is applied to new, unseen data. It is also 
commonly used for comparing the performance of different 
models, as well as for selecting the optimal model parameters. 
In the case of reserve estimation for the Bled El Hadba phos
phate deposit, LOOCV was used to select the best variographic 
models to be used for kriging. By systematically testing different 
variographic models using LOOCV, we were able to identify the 
most representative variograms for accurate reserve estimation.

Despite the many benefits of LOO, scaling this approach to 
large datasets can be challenging [10]. The naive approach of 
LOO involves computing n posteriors, which can become com
putationally expensive in situations where n is large [9]. Even 
the computation of a single posterior can be timeconsuming, 
making it difficult to scale the approach to large datasets.

The current study holds both technical and economic signifi
cance by providing a sound evaluation of mining reserves, which 
in turn contributes to the enhancement of grade control, efficient 
management of extraction process, and effective ore processing.

Material and methods. Geological setting. The Bled El 
Hadba deposit is located 14 km southeast of Bir El Ater and 
6 km from the AlgerianTunisian border. The area of the zone 
recognized by exploratory boreholes is approximately 2.9 km2.

Structurally, the Bled El Hadba area constitutes the west
ern flank of the antiform structure of Jebel Zrega, whose crest 

line forms the AlgerianTunisian border. This mining area is 
located symmetrically with respect to the southern flank of 
Jebel Onk (Djemi Djema and Kef Es Sennoun), whose phos
phate layer is on average about 40 m thick [11].

The wall and roof structures of the phosphate bundle 
(Fig. 1) illustrate well the monoclinal dip, towards the West of 
the phosphate series. Several horizontal setbacks, NWSE, are 
cartographically visible, but they do not cause significant 
changes in the phosphate layer geometry [5].

The phosphate deposit geology is relatively simple; it was 
described by Dussert (1924). The geological map of the region 
shows the phosphate layers of the Thanetian age, under the 
Ypresian flint limestones and the Miocene sands (Fig. 1), 
plunge in a monocline fashion and under a gentle slope of 6 to 
10° towards the West and the NorthWest, this dip becomes 
more accentuated towards the South of the deposit (Fig. 2) [5].

The used approach description. In order to facilitate and im
prove the mineral reserves estimation, a geostatistical ap
proach is used [7]. This approach involves several steps de
scribing the kriging interpolation process, associated with an 
adjustmentvalidation coupling [8].

A MATLAB calculation code is implemented to automate 
the processing and improve the reserve calculation procedure 
performance.

Adjustment method. The least squares method is used for 
the adjustment by comparing the experimental data with a 
mathematical model supposed to describe these data [12].

In the case of nonlinear least squares it is about minimiz
ing the function
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with ri(x) i = 1, …, m, is a nonlinear functional defined over Rn, 
where r(x) is the vector of residuals dependent on the para
meters x.

Fig. 1. Geological map of the structure of the Bled El Hadba phosphate deposit (Eastern Algeria) [5]
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With
ri(x) = yi - f(ti, x), i = 1, …, m,

where f(ti, x) is a nonlinear function (the model) with ti the 
independent variables and x ∈ Rn the parameter vector to be 
estimated.

In order to write the quadratic model for the minimization 
of equation (1) we need the first and second derivatives of g(x).

The first derivative is written
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where ∇r(x) is the Jacobian matrix.
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The second derivative is written as
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The GaussNewton method uses an approximation of the 

matrix of second derivatives (3) omitting the term S(x). As S(x) 
is composed of a sum of terms ri(x)∇2ri(x), this simplification 
is justified in a situation where the residuals ri(x) are small.

Cross validation LOOCV. The Leaveoneout CrossVali
dation (LOOCV) method [8, 9] is based on dividing the data set 
under study into two parts, an observation pair for validation, 
i. e. (x1, y1) and the rest of the samples (x2, y2), …, (xn, yn)  as 
learning samples. Note that the pair (x1, y1) is not used for mod
el fitting. The value x1 and the estimation function   1f  are used 
to find the value of 1.y  Then, the meansquare error (MSE) of 
the test for this observation couple is calculated as follows

 2
11 1( ) .MSE y y= -

This process is repeated for each pair (xi, yi), i = 1, …, n.

The test error is calculated for each i

  2( ) .ii iMSE y y= -  (4)

The test error for the LOOCV method is the average of the 
errors
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Models evaluating criteria. The model to be used is chosen 
according to the minimum value of MSE. The existing agree
ment between experimental and theoretical variogram values 
is assessed using both the efficiency indicator (NashSutcliffe 
efficiency NSE) [13] and the precision with the rootmean
square error (RMSE) indicator, and RMSEobservations 
standard deviation ratio (RSR)[14].

The NashSutcliffe efficiency (NSE) criterion is calculat
ed as follows [15]
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The NSE range is between − ∞ and 1 (perfect fit) [13].
A simple way to obtain the model accuracy consists of cal

culating RMSE (rootmeansquare error) [15]. The RMSE 
represents the differences between the values predicted by a 
model and the values actually observed.
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The RSR is calculated by the ratio between the RMSE and 
the standard deviation of the measured data [14]
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The RSR varies from the optimal value of 0, which indi
cates zero RMSE or a residual variation and therefore a perfect 
model simulation, to a high positive value. The lower is the 
RSR, the lower is the RMSE indicating a better match be
tween the observed and simulated data.

Principal Features of the variogram model. The variogram is 
a fundamental tool in geostatistics for describing the spatial 
structure of regionalized variables. It serves as the foundation 
for prediction and simulation algorithms and provides valu
able insights into the properties of these variables. It is charac
terized by parameters such as the range, nugget effect, sill, and 
variograph (Fig. 3).

Fig. 2. Geological Profile oriented east–west [5]:
1 – Miocene detrial deposits (sands and clays); 2 – Miocene basal conglomerate; 3 – Whitish organic limestone, strongly gypsum; 4 – Lumichel-
lic limestone, residually phosphate, with flint nodules and quartz geodes; 5 – Phosphate with nodules of flint, and debris of limestone and marl; 
6 – Gypsum marl, whitish, with flint nodules, residually phosphate; 7 – phosphated layer of the higher thanetian (CS + CB: lumachellic phosphate 
with quartz geodes); 8 – CM phosphated layer of the higher thanetian; 9 – Pelitic marl bedded, residually phosphate; 10 – Coprolithic phosphate, 
marly cement; 11 – Well-logs (exploratory boreholes)
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The variogram is constructed by plotting the semivariance 
of the attribute against the distance between data points. This 
resulting graph is then fitted with a mathematical function, like 
spherical, exponential, or Gaussian models, to characterize 
spatial correlation.

Estimation method. The variographic model chosen at the 
outcome of the crossvalidation is used to interpolate by krig
ing [4], the studied variables, where they were not sampled, 
and subsequently to evaluate the mine reserves by the geosta
tistical method (ordinary kriging)[7].

The elaborated tool structure. The calculation code is devel
oped as nested loops dealing with different phases of a geosta
tistical calculation. The observations outcoming from the ex
ploration campaigns are the input data of the developed model.

The calculations are structured as follows:
1. Calculation of experimental variograms from survey 

data introduced, followed by the theoretical models adjust
ment using the least squares method (iterative calculation).

2. Identification of the best model of the adjusted vario
gram using the cross validation method (LOOCV): The ex
perimental variogram is established from the n - 1 samples, 
the remaining sample is used to compare the estimated vari
ables to the sampled variables. This procedure is repeated n 
times corresponding to the number of samples.

3. Discretization of the study area and establishment of the 
mesh matrix according to the chosen space step.

4. Establishment of the kriging matrices corresponding to 
different mesh points, thus making it possible to estimate the 
variables and their estimation variances.

5. Display of estimation results in graphical and tabular 
forms.

The geostatistical approach application. Application case. 
After having implemented the geostatistical approach, it is 
necessary to implement it on a real case, in order to test the 
followed approach performance.

The Bled ElHadba deposit (NorthEast of Algeria) was 
chosen to study the spatial variability of P2O5 contents and 
thicknesses. We are interested in the study of the deposit main 
layer, which corresponds to the middle layer.

The geochemical data (61 holes) outcoming from the de
posit exploration campaigns are used. These samples are dis
tributed in an irregular manner; the intersample distance is 
quite large, reaching up to 500 m in some places.

Results. The geostatistical approach application to the 
BledElHadba deposit allowed us to estimate phosphate re
serves, based on available geochemical data.

The calculation results of the phosphate grades and thick
nesses of the study area are presented below in the form of var
iographic models and estimation maps.

Phosphate layer thicknesses estimation. Theoretical and ex
perimental variograms derived from the LOO crossvalidation 
are presented in the following figure.

Experimental variograms showed the influence of some 
samples in the variance calculation (the difference can reach 

15). The theoretical variograms adjustment to the experimen
tal data shows a good fit following to the exponential model 
used (Fig. 4).

After calculating the variograms and applying the valida
tion procedure, it is a question of choosing the most represen
tative model (Fig. 5).

This variogram reaches a sill of C(0) = 35.6677 for a maxi
mum range of a = 1380 m. The chosen model shows a continu
ity near the origin illustrated by a nugget effect (C0 = 0).

The adequacy between theoretical and experimental mod
els is quantified by the evaluating criteria of the fit quality 
(MSE, RMSE, NSE, RSR). The results are shown in Table 1.

The concordance between theoretical and experimental 
models is evaluated by the RMSE, NSE and RSR criteria, 
which display allowable values (Table 1).

The mean squared error (MSE) is vital in the choice of the 
best validation model. As a result, the chosen model has a 
minimum MSE of 0.036.

The theoretical model chosen is used in an Ordinary Krig
ing procedure in order to evaluate the dispersion of the phos
phate layer thicknesses in the study area (Fig. 6).

This map shows the thicknesses distribution in the deposit, 
which vary between 8 and 25 meters

In order to evaluate the quality of the estimation results, it 
is necessary to calculate the estimation variance (Fig. 7).

The sampled area has an acceptable estimation quality 
(variance < 35.66), where the best quality is found in the cen

Fig. 3. Variogram parameters [16]:
a – Range; C0 – Nugget effect; C0 + C – Sill variance; γ(h) – 
Semi-variance; h – Distance (m)

Fig. 4. Phosphate layer thicknesses validation variograms:
a – Experimental data; b – Best fit

Fig. 5. Phosphate layer thicknesses variographic model selected:
a – Experimental data; b – Best fit; c – Range

Table 1
Quality criteria of fitted models for thicknesses of the 

phosphate layer

MSE RMSE NSE RSR

Theoretical 
models

MIN 0.036 6.226 0.318 0.514

MAX 182.335 8.851 0.694 0.845

MEAN 23.037 8.205 0.570 0.646

 Retained model LOOCV 0.036 6.599 0.572 0.642
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tral deposit zone (variance < 12), characterized by a higher 
sampling density. A proportionality relationship is established 
between the estimation variance and the samples number.

The phosphate content estimation. The geostatistical ap
proach application in the spatial variability study on the grades 
gave similar results to those of the thicknesses, corresponding 
to crossvalidation variograms (Fig. 8), variographic model re
tained (Fig. 9), content dispersion map (Fig. 10), content vari
ance map (Fig. 11).

The range value corresponding to the retained phosphate 
contents variogram has considerably decreased (742 m) com
pared to that of the thicknesses variogram. The level of this 
variogram reaches a sill of C0 = 3.87.

The assessing criteria of the content fit quality leads to al
lowable values (Table 2).

Reserves estimation. The phosphate reserves of the depos
it middle layer (Table 3) are calculated from the thicknesses 
and contents. These are estimated by applying a geostatistical 
method associated with a crossvalidation procedure allowing 
improving accuracy by choosing the best variographic model.

Discussion. The application of a geostatistical approach al
lows improving the quality of the reserve estimation, by study
ing the variographic model choice. This approach is developed 
as a calculation code under Matlab, associating the various 
adjustment steps of validation and kriging.

The models used for kriging are chosen using a crossvali
dation procedure (LOOCV), which improves the quality of 
ordinary kriging results (Figs. 6, 7, 10 and 11). The leaveone
out crossvalidation application, allows the generation of a 
large number of variograms (Figs. 4 and 8) according to the 
number of samples used, thus allowing us to study the spatial 
variability grade and thicknesses of the mineralized layer.

Fig. 6. Phosphate layer thickness dispersion map

Fig. 7. Phosphate layer thicknesses estimating variance map

Fig. 8. Phosphate content Cross-validation Variograms:
a – Experimental data; b – Best fit

Fig. 9. Phosphate content retained variographic model:
a – Experimental data; b – Best fit; c – Range

Fig. 10. The phosphate content dispersion map

Fig. 11. Estimating the phosphate content variance map

Table 2
Quality criteria of fitted models for phosphate content

MSE RMSE NSE RSR

Theoretical 
models

MIN 1.54 ∙ 10-7 34.791 0.084 0.883

MAX 214.554 35.883 0.281 1.076

MEAN 23.053 34.900 0.199 0.990

Retained model LOOCV 1.54 ∙ 10-7 34.953 0.248 0.989

Table 3
The phosphate reserves estimation

The mineralized rock 
reserves (million m3)

Phosphate reserves 
(million m3) Phosphate Content

81.185 20.255 %
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resource estimates, which is important for investors, regula
tory bodies and other stakeholders involved in the mining 
industry. Overall, the validation of the variograms models 
using the LOOCV method provides both technical and 
practical benefits, making it an important tool for the min
ing industry.

Limitations and directions of research development. It is 
important to note that the choice of crossvalidation meth
od depends on the number and distribution of samples. 
When dealing with limited sampling, the LOOCV method 
is recommended, as it involves eliminating a sample in turn 
for verification [18]. This method ensures that the spatial 
continuity of the parameters being studied is not affected by 
using (n - 1) samples for experimental variogram calcula
tions.

In the future, it is important to explore methods that offer 
more robust evaluations while considering simplicity of appli
cation and minimal computational cost. By seeking such 
methods, you can strike a balance between accuracy and com
putational efficiency. However, it is crucial to select the valida
tion method based on the specific characteristics of the prob
lem and the available data. Different methods may be more 
suitable for different scenarios, and careful consideration 
should be given to ensure the chosen method aligns with the 
requirements and limitations of the study.

Conclusion. The geostatistical approach developed in this 
study has demonstrated its effectiveness in improving the esti
mation of mineral reserves. The use of the least squares and 
LOOCV methods in the variogram model selection and esti
mation phases, respectively, has resulted in a more accurate 
representation of the spatial variability of the studied parame
ters. The evaluation of efficiency factors, such as NashSut
cliffe, RMSE, and RSR, has confirmed the quality of the ad
justment models obtained.

However, the sensitivity of the least squares method to ini
tial data highlights the need for caution in its use, and the ap
plicability of the LOOCV method may be limited to sites with 
a smaller number of data points. The development of a com
puter code for this geostatistical approach provides a practical 
tool for decisionmakers to use in the management and ex
ploitation of mining sites. Overall, this study has contributed 
to the advancement of geostatistical techniques and their ap
plication in the mining industry.

We suggest a generalization of the accuracy assessment 
method using LeaveOneOut CrossValidation, a model vali
dation technique widely used in estimation fields like geosta
tistics. This method is particularly suitable for small datasets, 
as commonly encountered in the mining industry.
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The use of different criteria such as NSE, RMSE, and 
RSR in the adjustment phase of theoretical models to the ex
perimental variograms allows for the evaluation of the fit 
quality and estimation error. The NSE criterion provides in
formation about the goodness of fit, while RMSE and RSR 
quantify the estimation error. By combining these criteria, an 
overall assessment of the quality of the model can be ob
tained.

Adapting the NSE criterion for quality improvement not 
only provides engineering information about the system, but 
also offers a comprehensive solution for quality engineering 
[17]. This means that the NSE criterion can be used to evalu
ate the quality of the models used in this study and provide 
information about the system being modeled. Furthermore, 
the NSE criterion can be used as a tool for quality improve
ment in the mining industry, providing a comprehensive solu
tion for quality engineering.

According to the results presented in Tables 1 and 2, the 
models used in this study provide reliable results for both the 
thicknesses variograms and phosphate grades variograms, 
with median NSE values of 0.570 and 0.199, respectively, 
and RSR values of 0.646 and 0.990, respectively. The choice 
of the best variogram is based on the quantification of the 
minimum square error of the thicknesses and grade vario
grams.

The efficiency and precision criteria also display allowable 
values, indicating satisfactory adjustment quality of the ex
perimental data to the theoretical models. Therefore, leave
oneout cross validation can be used to estimate and compare 
the performance of the models.

The above statement indicates that the criteria used to 
evaluate the quality of the adjustment of experimental data to 
theoretical models are satisfactory. The meansquare error 
(MSE) of the thickness and grade variograms is 0.036 and 
1.54 ∙ 10-7, respectively, indicating that the models are well
fitted to the data (Figs. 2 and 6). Additionally, the NSE (Nash
Sutcliffe efficiency) and RMSE (root mean square error) val
ues of 0.572 and 6.599, respectively, indicate that the models 
provide reasonable estimates of the observed data. Overall, the 
results suggest that the theoretical models provide a good rep
resentation of the observed data and can be used to make ac
curate predictions.

The use of leaveoneout crossvalidation (LOOCV) in 
this study is appropriate because the dataset used is relatively 
small, with only 61 samples. LOOCV is a powerful method 
for model selection because it is model agnostic and provides 
an unbiased estimate of model performance [18]. However, it 
can be computationally expensive for large datasets due to the 
need to refit the model for each sample repeatedly [19]. Ac
cording to the literature cited, LOOCV is favored for a limit
ed number of data, and in this case, it offers a better solution 
with minimal time cost. Overall, the use of LOOCV in this 
study is justified and can provide reliable estimates of model 
performance.

The results obtained from the ordinary kriging phase are 
considered representative and are supported by the geostatisti
cal approach and LOOCV procedure (as seen in Figs. 3, 4, 7 
and 8). The use of these methods provides confidence in the 
accuracy and reliability of the obtained results.

This validation can be seen from two perspectives. The 
first is used in the computer science community, it consists 
in improving the quality of the adjusted model. The second 
perspective is from a practical standpoint, where the vali
dated model can be used to make better decisions in re
source management and exploitation. By having a more ac
curate estimate of the mineral reserves, mining companies 
can optimize their extraction plans, reduce waste and mini
mize costs. This can lead to significant improvements in 
profitability and sustainability of the mining operations. Ad
ditionally, the use of geostatistics and crossvalidation 
methods can increase the reliability and credibility of the 
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Мета. Вибір відповідної варіографічної моделі має 
вирішальне значення в геостатистиці для отримання точ
них оцінок запасів корисних копалин. Метою цієї роботи 
є розробка інструменту оцінки запасів із використанням 
геостатистичного підходу.

Методика. Геостатистичний підхід базується на виборі 
найбільш репрезентативних варіографічних моделей для 
змінних, що досліджуються. Відбір моделей здійснюється 
шляхом застосування процедури перехресного затверджу
вання з виключенням по одному (LOOCV). LOOCV – це 
метод повторної вибірки, що використовується у статис
тичному аналізі й машинному навчанні для оцінки по
милки узагальнення моделі та порівняння ефективності 
різних моделей. Після цього змінні, що досліджуються, 
оцінюються за допомогою звичайного кригінгу.

Результати. Застосування запропонованого підходу 
дозволило отримати задовільні результати з точки зору 
дисперсії сортів і товщини мінералізованих шарів на фос
фатному родовищі. Для оцінки якості отриманих моделей 
коригування були використані коефіцієнти ефективності, 
такі як коефіцієнт НешаСаткліффа та коренева серед
ньоквадратична похибка (RMSE). Ці фактори надають 
кількісну оцінку узгодженості між значеннями, що спо
стерігаються та прогнозуються. Значення ефективності 
НешаСаткліффа та середньоквадратичної похибки 0,572 
та 6,599 відповідно, свідчать про кращу відповідність і 
більшу точність моделей коригування. Критерії точності 
та ефективності досліджуваних змінних мають прийнятні 
значення із середньоквадратичною похибкою 1,54 ∙ 10-7.

Наукова новизна. Поєднання методів найменших ква
дратів і LOOCV у геостатистичному аналізі призводить 
до підвищення точності оцінок, більшої надійності у 
представленні просторової мінливості параметрів і біль
шої впевненості в достовірності моделей коригування.

Практична значимість. Розробка комп’ютерного коду 
для цього геостатистичного підходу забезпечує практич
ний інструмент для осіб, які приймають рішення, для ви
користання в управлінні та експлуатації гірничодобув
них об’єктів. Загалом, це дослідження сприяло розвитку 
геостатистичних методів і їх застосуванню в гірничодо
бувній промисловості.

Ключові слова: родовище Блед-Ель-Хадба, перехресне 
затверджування (LOOCV), геостатистика, кригінг, запа-
си корисних копалин
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