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Purpose. To solve the problem of the allocation of contact vertical normal tensions along the sole of a rigid round stamp, lo-
cated in an elastic isotropic half-space at a certain depth 4 # 0. To compare the obtained solution with the well-known classical
result for 4 =0, to check the obtained results for adequacy.

Methodology. Based on the analysis of the decision on the stress-strain state of the base, inside which there is a vertical arbitrary
load distributed over the area of the circle, the necessary formulas are obtained to solve the problem. An algorithm for constructing
an approximate solution has been developed, the essence of which is to use a combination of the boundary element method and the
iteration process by S. N. Klepikov. For a number of depths, approximate solutions of the considered problem are obtained.

Findings. The proposed algorithm for the approximate solution of the problem of indenting a round rigid stamp into the upper
boundary of an elastic isotropic half-space has good agreement with the exact solution and can be used to solve contact problems.
The outlines of the contact stress diagrams depend on the depth at which they are determined — the greater the depth, the flatter
the outlines of the diagrams are, while starting from a certain depth, the diagrams of contact stresses practically coincide. The
greater the depth is at which the stamp is located, the more force must be applied to obtain equal displacements of the stamp.

Originality. The obtained research results significantly expand the possibilities of solving various problems of soil mechanics and
foundation engineering, make it possible to obtain absolutely new results. In particular, a clear dependence of the contact stresses along
the sole of a rigid round stamp on the depth at which it is located was identified. In addition, the presented data allow us to designate
an absolutely new direction in the calculation of the foundations of ground anchors, namely, the calculation of their deformations.

Practical value. For engineering practice, it is important that the greater the value of Poisson’s ratio of the base is, the greater

the contact stresses are, other things being equal.

Keywords: deep laying foundations, contact tensions, hard stamp, ground anchor, base sinking, isotropic half-space

Introduction. Deep foundations with round soles are de-
signed to transfer the load to strong soils at very great depths.

These foundations perceive heavy loads, since with a sig-
nificant depth of their immersion, the protrusion of the soil
from under the sole to the day surface is excluded.

At the same time, ground anchors are used for fixing soil
slopes, open and underground workings, pits, chimney foun-
dations, masts, towers, other structures and their elements.

Deep foundations and ground anchors are widely used in
mining, mine building, civil, transport and hydrotechnical
construction [1, 2].

From the point of view of geometry, these two types of
structures are identical considering the fact that the ratio of
their radius R to the laying depth of their soles /# is much more
than 10 [1, 3].

When designing such structures, it is very important to
know the distribution of vertical normal contact stresses along
their sole. In the first approximation, for a theoretical solution
of the problem under consideration, it is sufficient to interpret
the soil foundation as a linear isotropic elastic medium, and
the sole of the deep foundation (or ground anchor) as an abso-
lutely rigid body [4, 5].

The relevance of the work. At present, when calculating
stresses in soil foundations, the so-called fundamental solu-
tions and the superposition principle are applied [5—7].

When using one or another fundamental solution, there are:

1. Stresses due to the action of a vertical concentrated force
applied to the upper boundary of the half-space (at a depth
h=0), where 4 is a distance from the day surface to the point
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of application of the force along the vertical (i.e. in the direc-
tion of the axis 0z, Fig. 1).

This fundamental solution is called the Boussinesq problem.

If the force acts in a horizontal direction, then we are deal-
ing with the Cerruti problem.

2. Stresses due to the action of a vertical (and horizontal)
concentrated force applied inside the half-space (at a depth
o >h=#0).

This fundamental solution is called the Boussinesq problem.

3. Stresses due to the action of a vertical (and horizontal)
concentrated force applied inside space (at depth /4 = o).

This fundamental solution is called the Kelvin problem.

Also known is the problem of stress distribution at the base of
a rigid round stamp located on the upper boundary of an elastic
half-space (i.e. at 4 =0). At the same time, the correct solutions
to the problem of a rigid stamp located in the soil half-space (i.e.
at h = 0) soil space (i.e. at # = ), are practically absent.

The research materials presented in this article are aimed
at solving this problem.

Purpose of the work. To obtain a solution to the problem of
the distribution of vertical normal stresses along the sole of a
rigid round stamp located in an elastic isotropic half-space at a
certain depth 2 = 0.

The obtained result was compared with the classical solu-
tion of the problem known in the literature for depth #=0 and,
thus, the obtained results were checked for adequacy.

Materials and research methods. At the first stage of research,
we performed an analysis of the well-known solution to the prob-
lem of the stress-strain state of the base, inside which there is a
vertical arbitrary load distributed over the area of the circle [7].

On this basis, the formulas necessary for solving the prob-
lem under consideration were obtained.
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Next, an algorithm for constructing an approximate solu-
tion to the problem was developed the essence of which is to
use a combination of the boundary element method and the
iteration process by S. N. Klepikov [8].

Further, for a number of depths, a number of approximate
solutions of the problem under consideration were obtained.

Formulation of the problem. Presentation of the main mate-
rial. Let us consider the problem of determining the contact
stresses at the base of a round-shaped, flat, buried ground an-
chor that has received vertical displacement W,. The design
scheme is shown in Fig. 1.

We formulate the research problem as follows. At a depth 4
parallel to the horizontal day surface of the base, there is a
round, flat stamp with a thickness 7. The stamp radius is R. The
thickness of the stamp is much less than its radius and the
depth at which the stamp is located, i.e. R> fand 4> t. The
elastic properties of the base are also known — its shear modu-
lus G and Poisson’s ratio v. It is required to determine the dia-
gram of contact stresses ¢(r) and the magnitude of the pull-out
(such a design scheme corresponds to a ground anchor) or in-
dentation (such a design scheme corresponds to a deep founda-
tion) concentrated force N. When determining these character-
istics, the deformations of the stamp in the radial direction can
be neglected, and its bending deformations are equal to zero.

Consider formula (12) from [7]. We have:
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Fig. 1. Calculation scheme of the “base—rigid stamp” system:

a — base; b — rigid stamp
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Next, using the passage to the limit, we find

and z is a vertical current coor-
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where W is total vertical movement of an absolutely rigid
stamp; Wjis the same, in plane z = & — 0; W, is the same, in
plane z = & + 0; Jy(x)is Bessel function of the first kind with

zero index and valid argument; A(a):fr-q(r)JO((x-r)-dr;

0
q(r) is some coordinate function r (this function has the physi-
cal meaning of a distributed load and the dimension kPa); a is
Bessel transform parameter a. € (0, «); z is current coordinate
8, 9].

Next, we perform asymptotic estimates of the formula ob-
tained by us (1). For # — 0 we have

. 1-v) 7
Wy =timw) = =2, [ @) dytonda @)

This estimate is valid when the stamp is located on the up-
per boundary (i.e. day surface) of the base. It should be noted
that formula (2) is usually used to determine the contact
stresses in the base located on the border of the soil base of flat
rigid stamps.

We accept in (1) h — o, we get

3-4.v %
W, =lim(W)=—| A(a)-J (o - F)da.. 3
= lim(W) 8-G-(1—v)-£ (@) Jooc-r) 3)
This estimate is valid in the case when the stamp is located
at a great depth (i.e., at a considerable distance from the day
surface of the base, in other words, when /#/R > 1). Next, we
find the ratio of the movement of the stamp located on the day
surface of the base (2) to the movement of the stamp at a con-
siderable depth (3), also Fig. 2
. W, 8-.(1-v)?
Wr=—b-_ " 4
W, 3-4.v @

©

Where W™ is relative displacement.

From formula (4) and Fig. 2, it follows that, other things
being equal (i.e., with the same properties of the base, the
magnitude and distribution law of the vertical load), depend-
ing on the value of Poisson’s ratio, sediment ratio at # — 0 and
h — oo changes by 2—2.7 times, and the greater the Poisson’s
ratio v is, the less W™ is.

Next, we find the contact pressure along the sole of the
rigid stamp. For this, it is necessary to consider the vertical
normal stresses G,(7, z).

From formula (12) on the /8" page of [7] we have:

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2023, N2 2 59



~
~

%
/

~
=

N
\\
N

TN

relative
displacement W¥, u.s.
w

~
]

N
[N

~
o

[=}

0.1 0.2 0.3 0.4 0.5

Poisson's ratio, u.s.

Fig. 2. Dependence of the relative displacement of a rigid stamp
W™ on Poisson’s ratio of the base v
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After that, using formulas (5, 6), we find the contact pres-
sure on the sole of the stamp at depth 4

q(r)=o_(r,h)—o (r,h) = TA(a)‘JO(a-r)-a-da. (7)
0

Formulas (1, 7) make it possible to construct an exact so-
lution to the problem.

To construct an approximate solution, we use the bound-
ary element method [10]. In doing so, we take into account the

axial symmetry of the problem. We divide the contact area into
n sections, and approximate the contact diagram with a
stepped line (Fig. 3).

We find the settlement of the base due to the ring load g;
(Fig. 4), whose width is equal to

a=ri.—ri (8)

In accordance with the diagrams in Figs. 3 and 4: and us-
ing the Bessel preformation, we have

A)=g;- [ Jy(o-r)-r-dr=
" ()]
:%'['}H () —n-Jy(n -a)},
where g; is distributed load within the i ring.

Next, we substitute (9) in (1) and we find the sediment of
the foundation at a depth /4 at the point with coordinate

a r,tr B
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Fig. 3. Actual contact diagram q(r) approximated by a stepped
line q,(r) (scheme):
N is the resulting force acting on the stamp, numerically equal to

the sum of the products of each of the contact stresses and the area
over which they act
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Fig. 4. Scheme for determining the displacements of the base
WAr), caused by annular stepped load g,

where

Jy(r, l-oc)_rj-Jl(rj-a)}

a a

A(a) = { AL

Next, we find the sediments of the center of each of the
rings into which the contact diagram is divided. We get

W,=;B,~,—-qi, (1D

where 7 is the number of ring sections into which the contact
diagram is divided.

By the condition of the problem, the stamp is absolutely
rigid. Therefore, the displacements at the contact of the stamp
with the base are equal to each other and are known in ad-
vance. Based on these considerations, we obtain an expression
for determining unknown stresses g;

|By|-a, =W, =W, (12)

Having determined within each of the concentric rings the
value of the load acting within it g, (Figs. 3 and 4), we find the
magnitude of the resulting force N. We get

N=2-n- jq(r) r dr~2n( -r?)-q;. (13)

i=1

For a number of values included in the formulas (1—13) of
the parameters, we calculated the distribution of contact
stresses ¢(r) and the values of the pulling force N.

To solve the system of equations (12) taking into account
condition (13) we used the iteration process. The essence of
the process is as follows [10]:

1. First, we need to set the magnitude of the force N. Since
the base is linear isotropic, after normalizing the results of
solving the problem, the value of the force does not affect their
distribution along the coordinate.

N
2. Next, using the formula p,; :7 it is necessary to

determine the pressure under the sole of the stamp in the ini-
tial approximation.

3. After that, using formulas (8), one should calculate the
settlements of the centers of each of the annular boundary ele-
ments W, ; (Fig. 4). In this case, the load on the base within
each of the boundary elements should be taken constant.

4. Next, using the formulas C, ;= p, ;/ W, ; it is necessary to
calculate the stiffness coefficients within the limits of each of
the annular boundary elements.

5. Next, using the formulas pf, =Dy, C,; the pressures
within each of the annular boundary elements should be cal-

culated.
< *
Z py; the
i=1

exact pressures within each of the annular boundary elements
should be calculated.
7. Further, using paragraphs 3—6, we determine W, C, ;, p, .
8. The iteration process is considered completed if the
condition

6. After that, using the formulas p,; :pl*,i N

P
Py

1-

where p; ; is pressure within the / " boundary element; i is the
boundary element number; j is the iteration number; € is some
small predetermined number.

Results of solving the contact problem:

1. First, we find a solution to the problem for # — 0. In this
case, the movement of the stamp should be determined using
(2), and the contact stresses should be determined using (5).

2. Next, we consider the exact solution of the problem (it is
presented in the work [10]). We introduce into consideration
an integral of the form

5 % R -W, at r<Rg;
w, 2 IO wnda=] 2 (R) (14)
T 0 o —;'arcsln 7 .

Formula (14) takes into account the direction of the pull-
out force acting on the stamp (Fig. 1).
3. Next, from the comparison of (2) and (14), we find

Alw) =W, g G sin(cx~R)
n (1-v)

Next, we substitute (15) into (7) and calculate the improp-
er integral thus obtained. We have

Jy(o-r). (15)

4 =W, 2O [sin(oc- R Jy(ar)-da=
7 (- g
(16)
2WG R

n (1-v) JR -1

Next, we normalize by putting in (16)
o

F—_,:i and q* :q(r)'n'(l_v)
’ R 2.W,-G

5

r
=
R

We get
1

*(r)=—[sin(€)-J (& r*)-do = ———. 17
g (r) {sm(&) o(&r")-da = (17
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To solve the problem by the boundary element method, in
(12) one should set W, =—1.

The values of the contact stresses calculated by (12, 17) at
the base of the rigid stamp located on the day surface of the
soil base (i.e. at 4= 0) are presented in Fig. 5.

Their comparison allows us to conclude that they almost
completely coincide. This, in turn, gives reason to believe that
the contact stress diagrams established using the boundary el-
ement method for depths /4 > 0 will be close to accurate. When
performing calculations at depths # > 0 in addition to the di-
mensionless complexes adopted in (17), one should take

. h
h % (18)
where /4 is the depth at which the contact diagram is deter-
mined; R is stamp radius.
The results of determining contact diagrams at different
depths are shown in Fig. 6.
Further, using formula (13), the dependence of the pull-
out force acting on the stamp was established N* =

1
=2 rc-Jq(r*) -r*-dr* from the depth of the stamp #* (Fig. 7).
0

After that, we studied the effect of contact stresses of the
Poisson’s ratio of the base on the distribution (Fig. 8).

Conclusions. The research results allow us to draw the fol-
lowing conclusions:

1. The approximate solution of the problem of indentation
of a round rigid stamp into the upper boundary of an elastic
isotropic half-space obtained using the algorithm proposed by
the authors is in good agreement with the exact solution
(Fig. 5). This led to the conclusion that the developed algo-
rithm can be used to solve contact problems.

2. The outlines of the contact stress diagrams depend on
the depth at which they are determined — the greater the depth
is, the gentler the outlines of the diagram are (Fig. 6). In this
case, starting from a certain depth, the diagrams of contact
stresses practically coincide.

0 0.2 0.4 0.6 0.8 1
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approximate
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Fig. 5. Exact and approximate solutions of the problem
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Fig. 6. Diagrams of contact stresses at the base of a rigid stamp
at various depths at Poisson’s ratio v = 0.3
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Fig. 7. Dependence of the force pulling out the stamp N* on the
depth of the stamp h™ at a single displacement of the stamp
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Fig. 8. Diagrams of contact stresses at depth h* = 10 for different
values of Poisson’s ratio v

3. The greater the depth is at which the stamp is located,
the greater the force must be applied to obtain equal stamp
movements (Fig. 7).

4. The greater the value of Poisson’s ratio of the base is, the
greater the contact stresses are, ceteris paribus (Fig. 8). In our
opinion, this fact is very important for design practice.

In general, the research materials presented in this article
allow us to conclude that the results obtained significantly ex-
pand the possibilities of solving various problems of soil me-
chanics and foundation engineering and make it possible to
obtain completely new results.

In particular, a clear dependence of the contact stresses at the
sole of a rigid round stamp on the depth at which it is located was
revealed. In addition, the presented data make it possible to des-
ignate a completely new direction in the calculation of ground
anchor base, namely, the calculation of their deformations.
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Mera. BupillleHHs1 3aBOaHHS i3 PO3MOALTY KOHTAKTHUX
BEPTUKAIbHUX HOPMaJbHUX HaIpyXeHb IO MiIOIIBi XOp-
CTKOTO KPYIJIOTO IIITaMIIa, PO3TAllIOBAHOTO Y IIPYXKHOMY i30-
TPOITHOMY HaITiBIIPOCTOPi Ha JesiKiit rinouHi 4 = 0. ITopiBHsI-
TU OTpUMAaHE PillleHHS 3 BITOMUM KJIIACMYHMM pPE3YJIbTaTOM
npu £ =0, nepeBipuTH OTPUMAaHi pe3yJIbTaTh Ha aleKBaTHICTb.

Metoauka. Ha ocHOBI aHani3y pillleHHS PO Hampyxe-
HO-71e(bOPMOBAHUI CTaH OCHOBHU, YCEpeAMHi SIKOi 3Haxo-
IUTHCS PO3TMOIiIIEHE IO TIIOII Kpyra BepTUKaJIbHE TOBiJIbHE
HaBaHTaXKeHHsI, OyJIM OTpUMaHi HeoOXiaHi (hopMyJIU IJIsT BU-

pillIeHHSI TTOCTaBJIEHOro 3aBaaHHs. Po3pobiieHO ajroputm
MoOYI0BY HAOGIUKEHOTO PIillIeHHSI, CYThb SIKOTO TOJISATA€E Y BU-
KOPUCTaHHI KOMOiHallil METOy FPAHUYHUX €JIEMEHTIB i Ipo-
uecy itepanii C. H. Knenikosa. 7151 psimy rIMOMH OTpUMaHi
HaOIMXKeHi pillleHHs 1aHO1 3a1a4i.

PesympraTin. 3anpornoHoBaHUi aqTOPUTM HAOIMKEHOTO
pPO3B’sI3aHHSI 3ajayi MPO BAABJIEHHSI KPYIJIOTO XOPCTKOro
LITaMIIa Y BEPXHIO MEXY MPYXKHOTO i30TPOIMTHOTO TiBIIPOCTO-
Py Ma€ TrapHy BilMOBIAHICTbh i3 TOYHUM DillIECHHSIM i MOXe
OyTH BUKOPUMCTAHWII [UISI PO3B’SI3aHHSI KOHTAKTHUX 3amad.
OO0pucH KOHTaKTHUX €MIOP HAMPYKEHb 3aJIeXKaTh Bill IIMOU-
HU, Ha SIKili BOHM BU3HAYaIOTbCSI — UMM Oi/blle TJIMOMHA,
TUM OiJIbII TTOJIOTUMU € OOPUCH EIIOPU, MPU LIbOMY, ITOYH-
Halo4YM 3 AESIKOi ITMOWHU, eMopy KOHTAKTHUX HATpyXeHb
MPaKTUYHO 30iratoThesi. Yum Oinbliie rimbuHa, Ha sIKiit po3-
TalllOBAaHUI LITAMIT, TUM OiIblIi 3yCUJLISL CJTiJ IOKJIACTH IS
OTPUMAaHHS PiBHUX MEPEMIllIEHb LITaMIIa.

Haykosa noBM3HAa. OTpuMaHi pe3yabTaTH JOCTiIKEHb
3HaYHO PO3LIMPIOIOTh MOXJIMBOCTI BUPIlLIEHHS Pi3HUX 3a-
BIaHb MEXaHiKM I'PYHTIB i (hyHIaMEHTOOYIiBHUIITBA, TAalOTh
MOXJIUBICTb OTPUMATU aOCOJIIOTHO HOBI pe3yibTaTh. 30Kpe-
Ma, Oyia BUSIBIEHA YiTKa 3aJle>KHICTb KOHTAKTHUX HaIpy-
>KEHb IO MiOLIBI XOPCTKOTO KPYIJIOro HITamIa Bil Tuou-
HU, Ha SKiii BiH 3HaxoauTbcs. KpiM Toro, npeacrapieHi naHi
TTO3BOJISIIOTh TO3HAYMTU a0COJIOTHO HOBUIA HAaMpsIM y po3pa-
XyHKY OCHOB TPDYHTOBMX aHKEpiB, a caMe — PO3PaxyHOK iX
nedopMalliii.

IIpakTyHa 3HauumicTh. [ MpakTUKW TPOEKTYBaHHS
BaXKJIMBUI TOM (haKT, 1110 YMM OiJibliIe 3HaUeHHS KoedillieHTa
[lyaccona ocHOBHM, TUM 3a iHIIIMX PiIBHUX YMOB OLIblll€ KOH-
TaKTHi HaNpy>KeHHS.

KimouoBi cioBa: ghynoamenm eaubokoeo 3aknadeHus, KOH-
MAKmHi HAnPYJICEHHs, HCOPCMKULL WMAMN, TPYHMOBULL aHKep,
0CIOQHHs OCHOBU, [30MPONHUI NOAYRPOCNID
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