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Purpose. Determining the dynamic factor of industrial equipment safety by studying the dynamic processes in a
nonlinear compressed shaft type oscillation system, which is widely used in mining industry. Such systems have pre-
viously been studied in literature solely based on the numerical modelling approach. In this paper, it is proposed to
use asymptotic methods of nonlinear mechanics and the method of special periodic functions for thorough investiga-
tion of dynamics of the above systems and the conditions of resonance phenomena occurrence. We also describe the
method for determining the dynamic factor of safety for boring equipment.

Methodology. The methods for analysing resonant oscillation regimes and determining the factor of safety for
industrial equipment elements are based on asymptotic methods of nonlinear mechanics, wave theory of motion and
the use of special Ateb-functions.

Findings. In this paper, the conditions of resonant oscillations for given nonlinear compressed shaft type systems
are analytically obtained depending on system parameters and the method for calculating the dynamic factor of
safety for industrial equipment elements is described.

Originality. Scientific novelty lies in the fact that, for the first time, the calculation of dynamic processes in com-
pressed shaft type systems is done based on analytical approaches that allow, in contrast to numerical and experimen-
tal approaches, investigating the dynamics features of such systems more precisely and avoiding the occurrence of
unwanted resonant modes in mining equipment.

Practical value. The presented method allows not only solving the problems of analysis, but also solving impor-
tant problems of oscillation system synthesis at the design stage as well as choosing the elastic characteristics of
dynamic systems and calculating the dynamic factor of safety for drilling equipment, taking into account the pos-
sible resonance phenomena. These mining machine features allow performing mining operations efficiently and
safely.

Keywords: nonlinear system vibrations, compressed shaft, elastic characteristics, dynamic factor of safety, special
Sfunctions

Introduction. The relevance of the topic, the state of tions of a body, which rotates around its axis with a con-
the problem under consideration and analysis of the re- stant angular velocity inside a continuous flow of homo-
cent research. Differential equations of flexural vibra- geneous medium, can be written as [1]
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In the equations (1, 2) u(x,f) and w(x,f) are the dis-
placement vector components of the observable body x
with 7 coordinate for an arbitrary time moment ¢; m is
the mass corresponding to the length unit of an elastic
body; m, is the mass corresponding to a length unit of
the continuous flow of homogeneous medium (CFHM),
which moves alongside the body; F is the elastic modu-
lus of the body material; /is the moment of inertia of the
body cross section about the axis which matches the
neutral axis in undeformed position (the given axis is
normal to the oscillation plane); V'is the constant veloc-
ity of the continuous medium alongside the elastic body;
Qis the angular velocity of the elastic body rotation; N is
the tension force; M is the drive momentum. The right
parts of equations (1, 2) are functions which describe
nonlinear components of the restoring force, resistance
force and other forces, the possible values of which are
much smaller than the restoring force, which is pointed
by the parameter F, and are explained in series by the
small parameter € degrees. Without limiting the general-
ity, throughout this paper, the functions fand g are con-
sidered as polynoms, and from their contents it follows
f{ W, ou ow ou ow
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Henceforth, it is considered that the medium, which
flows alongside the body, does not influence its bending
rigidity, while the relative momentum and the rotating
momentum are small values. The equation system (1, 2)
is complemented with boundary conditions, which de-
termine motion conditions of the elastic body at x =0
(beginning) and x =/ (end). Assuming motion condi-
tions as a fixed hinge, we have

2
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Thereby, the task is to build an approximate solution
of the boundary value problem (1—3) and, based on this
solution, create convenient dependencies for engineer-
ing calculation purposes, which can estimate the influ-
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ence of the compressed shaft type oscillation system
parameters on the nonlinear vibration dynamics.

The research on dynamic processes in different
technical vibration systems using special Ateb-func-
tions and the wave motion theory has been intensively
used in the past ten years [2]. In the paper [3] these
functions are used for finding the effective parameters
in vibration protecting systems, whose mathematical
models are described with ordinary differential equa-
tions. In paper [4], a thorough research on shock vi-
bration systems is conducted. The mathematical mod-
els of these systems are described by equations of
mathematical physics.

The main ideas of the wave theory are widely used
in solving applied problems, where classic Fourier or
D’Alembert partial differential equation integrating me-
thods are not applicable. This is mostly related to prob-
lems which describe dynamical processes in longitudi-
nally moving mediums. Namely, these are the longitudi-
nal and flexural vibrations of belt drives, water transport-
ing pipelines, screw machines along which a viscous or
loose medium moves [5], vibro-separations to some ex-
tent, etc. It should be noted that the longitudinal part of
the medium velocity affects not only the quantitative
characteristics of the above mentioned systems, but also
significantly influence the quality characteristics — result
in a vibration or stability failure [6]. The latter is the most
important from the practical point of view.

It should be noted, that the dynamic processes in
“elastic body — moving medium” systems, were studied
using the analytic and numeric integration of respective
mathematical models in [7]. Paper [1] is dedicated to
the development of approximate asymptotic research
methods of respective vibration systems. The methods
developed in the paper showed that, in the case of me-
dium motion with velocity that approaches the critical
level, there is energy redistribution in the system, which
leads to sufficient amplitude increase.

However, the numeric approach to integration of
differential equations which are modelling the dynami-
cal process, does not allow determining a large number
of dynamic characteristics of the system, such as the re-
lationship between the critical fluid velocity and the
body angular velocity, the body rigidity, etc. According
to this fact, the analytical solving of the given problem
has both theoretical and practical interest.

In the paper [8], the qualitative research methods for
nonlinear vibrations in such systems, and systems of
similar type are presented.

The method of investigating the matematical model of
nonlinear vibrations of the elastic body. For solving the
boundary problem (1-3), let us first consider a non-
perturbated analog of such a system, namely the follow-
ing equations
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Developing the main idea of the wave theory of mo-
tion, it is shown that the solutions of the above men-
tioned equations can be interpreted as the imposition of
direct and reflected waves, and can be written as

u, (t,x) :acos(zcx + ot +¢//)+bcos(/<x —a)t—go);

W (t,x) = csin(/cx + ot +l//)+dsin(icx—a)t —go), 7

where a, b, ¢, d are amplitudes of the direct and reflect-
ed waves; k¥ and @ are their wave number and frequen-
cy respectively; ¢ and ¥ are the initial phases.

Taking into account (7), from the differential equa-
tion system (4, 5), the following dispersion relations can
be written

(m+m1)a)2 +2§(m1 +m, )Qa)—NK2 +

+EIx* +(m, +m, )92 =0;

(m+m)o’ +2§(ml +m,)Qo—- Nk’ +
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The non-perturbated differential equation system
(4, 5) is a linear system with constant coefficients, there-
by the wave number and the frequency of the dynamical
process does not depend on the wave amplitude. It al-
lows stating that the amplitude components of the direct
and reflected waves are the same, namely |a| :|c| and
=] .

Besides, the relations (7) must satisfy the bound-
ary conditions (6). The boundary conditions must be
satisfied for an arbitrary moment of time. This is true
when

o=v; Kksz”; jaf =[]

Therefore, single-frequency solutions of non-per-
turbated equations are transformed into the following

Uy (t,x) =a, (cos(ka + ot +l//k)—
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These single-frequency solutions have a correspond-
ing dispersion relation

(m1 +m2)w,f+2§2a)k —~Nx?+Elc* =0.

The dispersion relation defines the natural bending
vibration frequency as a function of angular velocity and
other parameters of the body as

Elx; -N o -0
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=R T e, (8)
In Figs. 1, a, b the dependency of the natural vibration
frequency of the elastic body from the linear mass of the
CFHM and the angular velocity at /=10 m, £ =105 and

[=15.5m, 2 =5 57! respectively is displayed.
From the physical sense of the relation (8) it also fol-
lows that in an elastic body there will be a vibration fail-

ure when the angular velocity is equal to

Q2
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N =EIx} -

In Figs. 2, a (N = 1000 N) and 2, b (N =0 N) the
dependency of the critical angular velocity on the length
of the body and the linear mass of the CFHM is dis-
played.

It is known [5] that the compression force acting on
the elastic body, affects the frequency and stability of its
bending vibrations. In the case under consiredation, the
critical velocity of stable motion also depends on the lin-
ear mass of the CFHM and the angular velocity. The
mentioned value of the compression force is defined as

Q2
m + m,

N =EIx} -

In Fig. 3, the dependency of the critical compression
force on the body length and the angular velocity is dis-
played. The graphical dependencies in Fig. 3 are built at
N=700N,/=15.5m.

The graphical dependencies in Figs. 1—3 show that:

- for CHFMs of greater linear mass, the natural vi-
bration frequency is smaller. In particular, for the linear
mass 10 kg/m it is 21 percent greater than for the linear
mass 20 kg/m (at the same values of all base parameters
and /= 15.5m);

- the linear mass of the CFHM plays the dominant
role for the critical angular velocity. Its increase from
20 to 30 kg/m leads to the decrease in the critical angular
velocity by 7.6 percent;

- the influence of the longitudinal compression force
on the critical angular velocity is greater for elastic bod-
ies of significant length;
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Fig. 1. The dependency of the bending vibration frequen-
¢y of an elastic body on the linear mass of the CFHM
and the angular velocity:
a—1=10m,Q=10s";b—1=155m, Q=15s"

- the greater the angular velocity of the elastic body
and the linear mass of the CFHM is, the smaller the
critical value of the compression force is.

These results can also describe a multi-frequential
process in a linear model of the “elastic body — moving
medium” system.

The analysis of the influence of periodic perturbation
on flexural vibrations of the elastic fixed-axis-rotating
body in CFHM. A non-autonomic particular type of
equations (1, 2), namely investigating the influence of
external periodic forces on the vibration system is very
complex for asymptotic research. This case is very im-
portant for practical operating of industrial equipment.
As the first approximation, in the so-called non-reso-
nance case, the effect of these forces results in a slight
change of the vibration form, while in the resonance
case it results in a considerable increase in the ampli-
tude, namely the increase in dynamical tension of the
body and pressure on the supporting bearings (bearing
balls). Therefore, the resonance phenomenon negative-
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Fig. 2. Dependency of the critical angular velocity on the
linear mass of the CFHM and the body’s length:
a—N=1000N;b— N=0N

ly affects the operating of the equipment parts, reducing
their exploitation resource. Below, the research on such
elastic body vibrations is considered, and a comparative
assessment of resonant and non-resonant vibration am-
plitudes under constant system parameters is conducted.

Hereby it is assumed that the external periodic per-
turbation frequency is close to flexural vibration fre-
quency of the body. The functions in the right parts of
the differential equation system, which describes the
body’s forced vibrations, are periodic by the phase of ex-
ternal periodic perturbation, i.e.

w20 o0 2w ow P Ow Ot S
bl )at96t’ax’ax"“7ax3,6x3 ,ax4’ax4’
and
ouow ou ow  ou dw d*u o*w
Gl U Wy s s s ey 2
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are 27 — periodic by 6= ut+y,; # is the frequency;
70 is the initial forced vibration phase,
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Fig. 3. The dependency of the critical compression force
on the base parameters
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where 4 is the amplitude.

Now, the resonance case in the elastic body vibra-
tions is considered, so it is assumed that the periodic
perturbation frequency is close to natural vibration of
the “Elastic body, which rotates — CFHM” system, thus

pu=qo;

N+ Elk}
0=0(Ik, ~1)xk, \/921(k,§1-2)+m+—mlk.

Applying the wave motion theory [1] for describ-
ing resonance on the main frequency, results in the
following

127
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where A= @ — p is the unbalance of natural and forced
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vibrations. In the case when the right parts of the equa-
tions (9) have the following properties
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then these relations can be written as
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Tables 1—3 present the resonant amplitude values
corresponding to different values of:

- angular velocities of the elastic body rotation
Q, s

- CFHM linear velocity V, m/s;

- CFHM linear mass m and the elastic body mass
m,, kg/m>.

The main elastic body characteristics are con-
sidered as: £ = 2.06:10"" N/m?; I = 6:10°°m*; N =
=7-10>N; k,=10; [ = 10 m; m = 40 kg/m?; m; = 35 kg/m>
(Table 1).

In Tables 2, 3 the resonance amplitude value cal-
culations are made, using the same parameter values
as in Table 1, excluding the linear masses, which are
considered as equal: case a) m = 40 kg/m?, m,=
=20kg/m?; case b) m =20 kg/m?, m,; =20 kg/m>.

The received theoretical data, and presented calcula-
tion relations allow concluding the following about the
vibration system:

- firstly, on increasing the CFHM velocity along the
elastic body, the resonant amplitude has several local
maximums;

- secondly, local maximums of the resonant ampli-
tude depend on the CFHM velocity as well as the body
angular velocity;

- thirdly, lower values of CFHM linear mass corre-
spond to lower values of resonant amplitude.
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The dynamic process influence on the body stress
state. Determining dynamic tensions caused by nonlin-
ear vibrations, is very important from the practical point
of view, along with determining the dynamics of rotating
elastic bodies in a flow of homogeneous medium. In the
case of vibrations caused by the effect of periodic forces,
whose frequency is close to the natural frequency, the
amplitude, and thus the dynamic tensions depend on
the frequency of the external force. When the mentioned
frequencies match, or when the frequency of the exter-
nal force approaches the natural vibration frequency in a
case of a weak damping, a resonance develops, i.e. the
amplitude increases dramatically. This amplitude in-
crease leads to considerable growth of dynamic tensions
inside the body. In this case, the dynamic (resonance)
tensions depend on the internal factors (physical and
mechanical parameters of the body and CFHM, geom-
etry, etc.) and the external factors (body angular veloci-

ty, perturbation forces, etc.), as shown in the above-
considered relations. Therefore, for quantitative assess-
ment of these factors, a convenient engineering mathe-
matical tool that will allow describing the maximal val-
ues of the dynamical tensions in the case of nonlinear
vibrations at fixed values of the angular velocity and the
velocity of CFHM needs to be developed.

Thus, it is necessary not only to predict resonance
phenomenon and calculate the resonance amplitudes,
but also to estimate the dynamic tensions in case of reso-
nance in observable elastic bodies. Summarizing the
above aspects, the problem of estimating maximal dy-
namic tensions appearing in an elastic body, which has a
constant angular velocity, in a CFHM, is not less im-
portant than the modelling of the dynamic process. In
other words, the above-solved dynamics problems can
be a basis for determining the strength characteristics of
production equipment.

Table 1
The value of the resonance amplitudes
v
0 3 5 8 10 15 18 20 25 30
Q
0 0.035 0.022 0.018 0.022 0.024 0.025 0.021 0.055 0.028 0.012
3 0.038 0.039 0.065 0.041 0.031 0.048 0.05 0.06 0.038 0.35
5 0.11 0.14 0.03 0.035 0.03 0.04 0.049 0.055 0.052 0.041
8 0.05 0.2 0.13 0.05 0.07 0.08 0.05 0.08 0.06 0.04
10 0.05 0.12 0.09 0.08 0.11 0.15 0.14 0.08 0.05 0.04
12 0.14 0.18 0.24 0.28 0.25 0.15 0.38 0.32 0.31 0.2
Table 2
The value of the resonance amplitudes in case a
v
0 3 5 8 10 15 18 20 25 30
Q
0 0.01 0.011 0.027 0.016 0.017 0.05 0.079 0.07 0.077 0.02
3 0.16 0.15 0.017 0.017 0.15 0.16 0.19 0.19 0.08 0.07
5 0.05 0.04 0.08 0.07 0.11 0.1 0.08 0.04 0.13 0.08
8 0.03 0.22 0.05 0.08 0.07 0.04 0.18 0.05 0.04 0.08
10 0.21 0.11 0.06 0.03 0.05 0.07 0.07 0.08 0.065 0.05
12 0.12 0.33 0.25 0.24 0.08 0.13 0.12 0.2 0.14 0.13
Table 3
The value of the resonance amplitudes in case b
14
0 3 5 8 10 15 18 20 25 30
Q
0 0.03 0.04 0.05 0.02 0.02 0.03 0.05 0.03 0.06 0.04
3 0.03 0.11 0.03 0.02 0.09 0.08 0.04 0.08 0.05 0.03
5 0.02 0.04 0.01 0.12 0.05 0.11 0.03 0.03 0.03 0.08
8 0.02 0.02 0.03 0.03 0.05 0.07 0.04 0.07 0.02 0.15
10 0.09 0.04 0.09 0.04 0.03 0.07 0.15 0.06 0.03 0.04
12 0.12 0.15 0.17 0.16 0.15 0.05 0.03 0.08 0.14 0.22
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For estimating the tensions, caused by the bending
vibrations of machine elements (specifically the body
rotating motion and CFHM motion), the following re-
lation is used

where W is the resistance momentum, which is deter-

mined as W =] / X

max

Taking into account the base relations for describing
the dynamic process, the tension can be calculated with
the relations

O-max

= %max(—ak2 (cos(kx + ot + ¢) -

—cos(kx—a)t—¢))),

where @ and ¢ parameters are determined by the dif-
ferential equations (4, 5) [4].

Conclusions. The analytical relations and graphical
dependencies in this paper show that:

1. The natural nonlinear vibration frequency of an
elastic body decreases at:

- higher values of CFHM velocity;

- CFHM of higher specific weight;

- amplitude of transverse vibrations.

2. The prior tension force of the elastic body affects
not only the main parameters of its nonlinear vibrations,
but also their stability. At tkzle prior tension force value

that approaches N = (”—kJ FEI a vibration failure oc-
curs. !

3. Resonant dynamic tensions of an elastic body,
taking into account its angular velocity, are the higher
for the lower “natural dynamic frequency” values (high-
er for the higher angular velocity values).

4. Resonant dynamic tensions at high values of an-
gular velocity are several times greater than the resonant
tensions of a “static auger” (which does not rotate). The
latter should be taken into account while choosing the
dynamic strength capacity.
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Meta. 3HaxomXKeHHS AMHAMIYHOro KoedilieHTa
3armacy MiIIIHOCTI TeXHOJIOTIYHOrO OOJIamHAHHS IIUISI-
XOM JOCJIIKEHHS JUHAMIYHUX TIPOLECIB y HeJIiHilHIi
KOJIMBAJIbHI CUCTEMi THITY CTHCHYTOTO Baja, IO Ma€
IIUPOKE BUKOPHUCTAHHS B TipHUYOPYIHINA IPOMUCIIO-
BocTi. MaTteMaTuyHi MoJesi TaKUX CUCTEM paHillle B
JliTepatypi JOCHiIKyBaaucs, TepeBaxkHO, Ha 0a3i uu-
CeJIbHOTO MOoJeIoBaHH. Y 1ili poOOTi MPOMOHYETHCS
BUKOPUCTATHU HAOJMKEHi METOAM HEMiHiiTHOT MexaHi-
KU ¥ 3aCTOCYBAaTH METONMKY CIICIliaIbHUX Iepioand-
HUX (DYHKIIi# 11T TPYHTOBHOTO MOCTIiIKeHHS TIMHAMI-
KJ BKa3aHUX CHCTEM i YMOB BUHUKHECHHS SIBUIIIA PE30-
HaHCY B HUX, a TAKOX OMMCATH METOIWUKY BU3HAUCHHS
JMHAMIYHOTO Koe(illieHTa 3amacy MillHOCTiI OypuJib-
HOTO OOJIaTHAHHSI.

Mertomuka. MeToauka aHajlizy pe30HAHCHUX pe-
KMMiB KOJMBaHb i BU3ZHAUCHHSI XapaKTePUCTUK Mill-
HOCTi €JIEMEHTIB MalllMH 0a3yeTbCsl HA aCUMMOTOTUY-
HUX MeTodax HeJiHiHOI MeXaHiKM, XBUJIbOBIi Teopil
pyXy i BUKOpPUCTaHHI crreniaTbHIX Ateb-QyHKITiii.

Pesyabratu. Y poOOTi 1151 BKa3aHUX HEJIIHIHUX KO-
JIMBAJIbHUX CUCTEM THUITY CTUCHYTHX BaJliB aHATITHIHO
OTPUMaHi YMOBU HACTaHHSI PE30HAHCY 3aJieXkKHO Bil
MapaMeTpiB CUCTEMHU Ta OIMCcaHa METOIMKa 00UHCIIeH-
HSI IMHAMIiYHOTO KoedillieHTa 3aracy MillHOCTi eJfie-
MEHTIB MaIlIWH.

HaykoBa HoBu3Ha. [1oJisirae B ToMy, 1110 BIiepiiie 00-
YMCJICHHS TMHAMIYHOIO KoeillieHTa 3a1acy MillHOCTi
B CUCTeMax THUITy CTUCHYTUX BaJliB 3[iliICHEHO Ha 0a3i
AHAJTITUYHOTO TiAXOMY, 1110 JO3BOJISIE, Ha BiAMiIHY Bil
YUCEJIBHUX Ta eKCITIEPUMEHTATbHIX METO/IIB, TOUHIIIIe
JOCITiIKYBaTU OCOOJMBOCTI AMHAMIKM TaKUX CUCTEM i
YHUKATU BUHMKHEHHS HeOaXkaHMX PE30HAHCIB y po00-
Ti €JIEMEHTIB TipHUYMX MAILIMH.

IlpakTnyna 3HaummicTh. [lpencraBieHa MeTommka
II03BOJISIE BUPILTyBaTH HE TiJIbKM 3ajadi aHalizy, ajie i
BaKJTMBI 3a7a9i CMHTE3Y TEXHITHUX KOJTMBAJIBHUX CHC-
TeM Ha CTalil MPOEeKTYBaHHS, 3AiMCHIOBAaTU BUOIp
MPY>XHUX XapaKTePUCTUK AUHAMIYHUX CUCTEM i 00-
YUCAIOBATU IMHAMIYHUM KoedillieHT 3amacy MillHOCTi
OYpUJILHOTO OOJIaTHAHHS, YPAXOBYIOUM MOKJIMBI pe30-
HaAHCHI sIBUIlA Y HbOMY. Taki XapaKTepUCTUKM eJie-
MEHTIB TipHUYMX MAIWH [I03BOJSIOTh €(heKTUBHO
3[ilICHIOBATU OE3I1eYHi ripHU4i poOOTH.
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KimouoBi ciioBa: koaueanms Heainiiinux cucmem, cmu-
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egiyicum 3anacy miynocmi, cneyianvHi QYHKYii

Heas. HaxoxneHue auHamMuueckKoro Koadduim-
€HTa 3araca MPOYHOCTH TEXHOJOTUYECKOro 000pymno-
BaHUs IMYTEM MCCJIEIOBAHUS NTUHAMUYECKUX MPOLEC-
COB B HEJIMHEIHO KoJiebaTeIbHOI CUCTeMe TUIIA CxKa-
TOrO Baja, KOTopasi UMeeT LIIMPOKOe MCIOJIb30BaHle B
TOPHOPYIHOI MPOMBILLIEHHOCTH. MaTteMaTuyeckue
MOJIeJIM TAKMX CUCTEM paHee B JuTepaType uccaenona-
JINCh, TIPEUMYIIIECTBEHHO, Ha 0a3¢ YMCICHHBIX TTOIXO0-
IoB. B 3T0i1 paboTe TIpemiaracTcst MCITOIb30BaTh IIPH-
OMVDKeHHBIE METOIBI HEIMHEWHON MEXaHWUKU W TIPU-
MEHUTHh METOIMKY CIICIIUAIbHBIX ITePUOANIECKUX (Dy-
HKIIMI IJIST OCHOBATEILHOTO UCCIeN0OBAaHUS JUHAMUKUA
yKa3aHHBIX CUCTEM U YCJIOBUSI BOSHUKHOBEHMUS SIBJIE-
HUsI pe30HaHCa B HMX, a TakXke OIMCaTb METOIUKY
orpeiesieHus] TMHaAMUYeCcKoro KoadduirmeHTa 3amnaca
MPOYHOCTH LIIHEKOBOTO 000pYIOBaHMSI.

Mertoauka. MeToauka aHaiaM3a pe30HAHCHBIX pe-
KMMOB KoOJIeOaHUI U OIpeleseHus] XapaKTepUCTUK
MPOYHOCTU BJIEMEHTOB MalllWH 0a3upyeTcsl Ha acUM-
NTOTUYECKNX METoHaX HeJIWHEHHON MeXaHWKHU, BOJI-
HOBOIT TCOpHMM IBMKCHMSI U MCITOIb30BAaHUM CIICIIMA-
JIbHBIX Ateb-DyHKIIMIA.

Pe3syabraTbl. B paGore misi yKa3zaHHBIX HEJIMHEN-
HBIX KOJIeOaTeIbHBIX CUCTEM THUIIA CXKAThIX BaJlOB aHa-
JINTUYECKU TIOJYYEHBl YCJIOBMSI HACTYIUICHUS] Pe30-
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HaHCa B 3aBUCHUMOCTH OT IIapaMeTPOB CUCTEMBI U OITH -
caHa METONMKA BBIYMCICHUS TMHAMUYIECKOTO KO3(D-
¢umeHTa 3amaca IPOYHOCTHU JIEMEHTOB MaIIIMH.

Hayunas HoBM3HA. 3aK/II09aeTCsl B TOM, YTO BIIEep-
BbI€ BBIYMCJIEHUE TMHAMUYECKOTO KoaduiineHTa 3a-
raca IMpOYHOCTHU B CUCTEMaX TUIIAa CKaThIX BaJIOB OCY-
IIECTBJEHO Ha 0a3e aHAIUTUYECKOTO IMOAXOoaa, KOTO-
PBIii TIO3BOJISIET, B OTJIMYKE OT YMCJIIEHHBIX U DKCIIEPH -
MEHTaJIbHBIX METO/IOB, TOUHEe UCCIenoBaTh OCOOEH-
HOCTH IMHAMUWKHU TAKMX CUCTEM U M30eraTh BOSHUKHO-
BEHUSI HeXXeaTeTbHbIX Pe30HAHCOB B paboTe 2/IeMeH-
TOB TOPHBIX MAIIIMH.

IIpakTHyecKas 3HaunMocTh. [IpemcraBieHHas Me-
TOIMKA TIO3BOJIAET pellaTh HE TOIBKO 3a1aul aHaI3a,
HO U BaXXKHBIE 3aJa4yM CHHTE3a TEXHUYECKUX Kojeha-
TEJbHBIX CHCTEM Ha CTaauM MPOCKTUPOBAHUS, OCY-
IIECTBJATh BBIOOP YIPYIMX XapaKTepUCTUK AWHAMM-
YECKHUX CUCTEM U BBIYUCIISATh TMHAMUYECKUI KO3 bU-
LIMEHT 3araca MpoOYHOCTU OYPUJIBHOTO 000pYIOBaHMS,
YUUTBIBAsT BO3MOXHBIC PE30HAHCHBIC SIBJICHUSI B HEM.
Takue xapaKTepHCTUKN 3JIEMEHTOB TOPHBIX MaIllH
MTO3BOJISTIOT (P (DEKTUBHO OCYIIECTBIATH Oe30TacHbIe
TOpHbIE PaOOTHI.

KioueBble ci0Ba: Ko01e0aHUs HEAUHEIHbIX CUCMEM,
coicamolil 8an, ynpyeue XapaKxmepucmuxu, OUHAMUYeCKUL
Ko3ghuyuenm 3anaca npouHocmu, cneyuanbHsle YHKuuU
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