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Purpose. Aiming at solving the fusion issue of surveillance images, a simple and efficient fusion framework
using block compressed sensing sampling (BCSS) is proposed in this paper, which consists of two fusion methods
using basic-BCSS and sliding-BCSS respectively.

Methodology. With the superiority of low sampling ratio and low computational complexity, compressed
sensing (CS) theory is widely used in signal processing. The basic-BCSS is a basic version of block based CS, in
which the source image is divided into distinct blocks, and the sliding-BCSS is a modified version of basic-BCSS
proposed for the first time, in which the image is divided into small sliding blocks for each pixel with appropriate
padding. The basic idea of the fusion framework is to select the blocks or pixels with greater L2-norm of the BCSS
measurement outputs of the divided blocks in spatial domain.

Findings. The fusion framework is tested on three pairs of grayscale surveillance images, including infrared
and visible images, and millimeter-wave and visible images, and compared with several traditional fusion meth-
ods. Experimental results demonstrate that the proposed fusion framework can significantly improve the fusion
quality and speed simultaneously.

Originality. A simple and efficient fusion framework using BCSS in spatial domain is proposed for the first

time.

Practical value. It has a certain practical meaning for real-time surveillance applications.
Keywords: image fusion, spatial domain, surveillance, infrared, block compressed sensing sampling, re-

al-time

Introduction. In surveillance applications, the de-
sign of sensors with better quality or some specific char-
acteristics may be limited by technical constraints [1],
and image fusion can fuse the information across the
electromagnetic spectrum, such as infrared, near-infra-
red, millimeter-wave (MMW) and visible bands [1].

The widely used visible image reflects the charac-
teristics of the targets in the visible band, and it is sen-
sitive to the change of the brightness in the scene and
accord with human visual perception [2, 3]. The infra-
red image is sensitive to the objects which have higher
temperature than the background, which make it able
to see at night without illumination, and the disadvan-
tage is its poor spatial resolution [1]. The MMW image
is widely used to detect objects concealed underneath
a person’s clothing using a form of electromagnetic ra-
diation, and it usually have low contrast and higher
noise. Image fusion can take full advantages of the dif-
ferent and complementary information from those im-
ages to make up for the limitation of one single sensor.
The fusion of infrared and visible images also has been
investigated for other surveillance problems in recent
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years, such as image dehazing, face recognition and
many military reconnaissance [1].

In response to the requirements in real-time sur-
veillance applications, the experts and scholars pay
much attention in proposing more effective fusion
methods. The methods are usually categorized into
two basic groups: the spatial domain methods and the
frequency domain based methods.

In spatial domain, the fusion methods are generally
directly functioned on the pixels. The simplest method
is to take the average of the source images pixel by pix-
el, which is known as spatial average (SA) method. An
often mentioned principal component analysis (PCA)
based fusion method mainly adopts the idea of the so-
called ‘component substitution’, which is not suitable
for fusion of two grayscale images and is usually used
in remote sensing image fusion. The Matlab code of
PCA based fusion method provided by Oliver Rock-
inger [4] is actually a simple spatial weighted average
method, where the weights are determined by the nor-
malized eigenvalues of the corresponding covariance
matrix of the stacked images. However, along with
simplicity there come several undesired side effects in-
cluding contrast reduction.
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In frequency domain, the experts and scholars de-
veloped the multiscale decomposition (MSD) based
fusion methods and achieved better fusion perfor-
mance. The classical MSD methods include the dis-
crete wavelet transform (DWT), the shift-invariant
DWT (SIDWT), the nonsubsampled contourlet trans-
form (NSCT) and the nonsubsampled shearlet trans-
form (NSST) etc. Generally, there are three basic steps
for MSD to fuse: 1) the source images are decomposed
into multiscale representations in different scales and
directions; 2) the multiscale representations are com-
posited according to certain fusion rules; 3) the fused
image is reconstructed using the corresponding in-
verse MSD transform [5]. However, no matter which
one of the MSD is used, fusion cannot be achieved
perfectly since MSD requires downsampling and
upsampling during the decomposition and recon-
struction process, and the original and reliable infor-
mation of the source images may be changed to a cer-
tain degree. Besides, each MSD has its own drawbacks.
For example, a common limitation of the DWT and
SIDWT is that they cannot well represent the curves
and edges of images since they lack directionality; the
curvelet and contourlet transforms are shift-invariant,
which are the same as the DWT [1]; the excellent per-
formance of the NSCT and NSST is achieved at the
cost of increasing computational complexity and
memory, which is not suitable for surveillance image
fusion due to their time-consuming property.

Surveillance applications usually involve continu-
ous real-time monitoring, and the major challenge is
to reduce computational complexity while preserving
the fusion quality. Therefore, the important question
in surveillance applications is how to improve the fu-
sion speed [1].

Nowadays, compressed sensing (CS) is widely used
for simultaneous data sampling and compression [6].
The CS principle provides the potential of dramatic
reduction of samplinxg rates, power consumption and
computational complexity in signal processing [6]. In-
spired by this superiority, a novel surveillance image
fusion method based on CS in spatial domain is pro-
posed.

The rest of this paper is organized as follows. Sec-
tion 2 presents the basic sampling theory of the CS,

distinct block

-

e \

sliding block

and then introduces the block-based sampling meth-
od; at last it proposes a modified version of the block-
based sampling for fusion. In Section 3, a simple spa-
tial domain fusion framework based on the two form of
block-based sampling is proposed. Experimental re-
sults and conclusion are demonstrated in Section 4
and Section 5 respectively.

Block-based CS sampling and a modified ver-
sion. Most existing works of CS are not suitable for
real-time applications since the sampling process re-
quires accessing the entire image at once.

Gan [6] proposed a bock-based CS sampling
(BCSS) technique for fast CS, where the original im-
age is divided into small distinct blocks and each block
is sampled independently using the same measure-
ment matrix in a low sampling rate. For simplicity, we
term this divided block scheme the basic-BCSS or
distinct-BCSS, and its schematic diagram is shown in
Fig. 1. The main advantages of the basic-BCSS in-
clude: 1) measurement operator can be easily stored
and implemented through a random undersampled
filter bank; 2) block-based measurement is more ad-
vantageous for real-time applications since the encod-
er does not need to send the sampled data until the
whole image is measured; 3) each block is processed
independently.

Let us consider an /. x [, image X with N =1, x I,
pixels in total and suppose we want to take n» CS mea-
surements. In the basic-BCSS, the image is divided
into small distinct blocks with size of B x B each and
sampled with the same operator. Let x; represent the
vectorized signal of the i-th block through raster scan-
ning, the corresponding output CS vector y; can be
written as

Yi= (I)Bxi’
where @5 is an nz x B? orthonormalized i.i.d matrix

B2
with #, :{n J

N
On the basis of the basic-BCSS, a modified BCSS
is proposed in this paper, which is termed sliding-BC-
SS and shown in Fig. 1. In the sliding-BCSS, the im-
age Xis divided into small sliding blocks instead, where
Xis appropriately padded by repeating border elements

Fig. 1. The schematic diagram of distinct block and sliding block
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in advance. Let us suppose that Xx; ; is a vector repre-
senting the sliding block centered on the location (x, y),
then the measurement result can be written as

Vi ;j=Dpx; ;.

The other parameters are the same as before.

The advantages are: 1) the measurement result of
each sliding block can be utilized to describe the fea-
ture of the specific pixel quantitatively since each pixel
is correlative to its surrounding; 2) the measurement
matrix is conveniently stored and employed because of
its compact size [7].

Fusion framework. In this section, a simple and
efficient spatial domain fusion framework is proposed
for surveillance images. A fused image F'is assumed to
be composed of a pair of the original source images A
and B that have already been registered perfectly. The
fusion framework consists of the following essential
stages.

1. Obtaining the measurements of 4 and B using
the basic-BCSS or sliding-BCSS.

2. Calculating the L,-norm of the measurement for
each block or pixel as the significance.

3. Generating a decision map through comparing
the significances with the same location to form the
fused image F'in spatial domain.

This fusion framework is essentially presented by
two proposed fusion methods.

Experimental results. In this section, three pairs
of grayscale surveillance images shown in Fig. 2, a, b,
Fig. 4, a, b and Fig. 5, a, b are provided to demon-
strate the validity and effectiveness of the two pro-
posed fusion methods. All the images to be fused have
been geometrically registered, which can be down-
loaded on the websites http://imagefusion.org and
http://www.ece.lehigh.edu/SPCRL/IF/cwd.htm.
These images have 256 grayscales and have different
sizes. All the experiments are conducted in Matlab 8.5
on a PC with Intel Core 2.4GHz i3-4000M CPU and
4.00GB RAM.

Apart from the proposed fusion methods, several
different traditional methods are also used in this pa-
per. All the fusion methods are listed as follows.

(M1) SA fusion method [4].

(M2) PCA based fusion method [4].

(M3) DWT based fusion method [4].

(M4) SIDWT based fusion method [4].

(M5) NSCT based fusion method.

(M6) NSST based fusion method.

(M7) The proposed fusion method based on basic-
BCSS.

(MS8) The proposed fusion method based on slid-
ing-BCSS.

In the above DWT, SIDWT, NSCT and NSST
based fusion methods, all the decomposition levels are
3, and all the fusion rules are the average scheme for
lowpass subbands and the maximum choosing scheme
for highpass subbands. The wavelets used in DWT, SID-
WT and NSST are DBSS(2, 2), Haar and ‘maxflat’, re-
spectively, and the wavelets in NSCT are ‘9-7’ for the
pyramid filter and ‘pkva’ for the directional filter.
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Fig. 2. ‘Quad’ infrared and visible images and the
Jused images:
a — infrared image; b — visible image; c—j — the
Sfused images using M 1—MS$&, respectively

For evaluating the performance of the proposed fu-
sion methods, several experiments are designed and
the computed fusion results are compared by visual ef-
fect subjectively and quantitative image criteria objec-
tively.

The visual effect analysis mainly focuses on the
quality of the preservations and improvements of im-
portant image features and the overall image contrast,
brightness and saturation.
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The first experiment is performed on ‘quad’ infra-
red and visible images with a size 0f 496 x 632 shown in
Fig. 2, a, b. From the source images, one can see that
the images contain much complementary informa-
tion. The visible image is only sensitive to the light,
and almost all objects are invisible in the image. The
entire image looks dark so that the image lacks bright-
ness and contrast. The infrared image is sensitive to
the difference of temperature, the pedestrians, the cars
and the traffic lights have great contrast in the images.
The resultant fused images based on M1—MS& are
shown in Fig. 2, c—j. From the fused images, we can
easily find that: 1) Fig. 2, ¢ obtained by M1 has the
lowest contrast without suspense; 2) Fig. 2, d obtained
by M2 has pretty much the same appearance as the
source infrared image, and the information of the
source visible image is not transferred to the fused im-
age at all, which indicates that M2 is with the worst
fusion performance in this experiment; 3) Fig. 2, e—A
obtain almost the same fusion effect, which are obvi-
ously better than Fig. 2, ¢, d. However, the images
have low brightness and saturation, and the contrast is
reduced to a certain extent, which are not suitable for
human to perceive; 4) Fig. 2, i, j have approximately
the equivalent results, where the most image features
are conducted, and the images have the same bright-
ness and saturation as the source infrared image.

For a clearer comparison, Fig. 3 depicts the details
of the enlarged areas extracted from the images of
Fig. 2, where the extracted area is shown in Fig. 2, a,
b. It can be seen that the fused image obtained by M8
is with the best visual quality since almost all the useful
information of the source images has been transferred
to it, and it preserves the high contrast and brightness,
which makes the objects very prominent for human
observation. The fused image obtained by M7 is with
the second best quality because it has certain block ef-
fects. Obviously, the block effects will become more
serious as the block size increases. The block size used
in M7 is 5 x 5. The performances of the other fused
images are relatively poor, which is consistent with the
previous discussion.

The second experiment is also performed on infra-
red and visible images. The source images ‘kayak’ are
shown in Fig. 4, a, b with size of 510 x 505. Fig. 4, a is
an AMB image captured by a Radiance HS infrared
camera (Raytheon), and Fig. 4, b is a CCD image cap-
tured by Philips LTC500 CCD camera. Fig. 4, c—j
show the fused images. Through visual observation,
similar conclusion can be obtained, that is, the pro-
posed two fusion methods provide the higher fusion
performances.

The third experiment is performed on ‘gun’ MMW
and visible images with size of 200 x 256 shown in
Fig. 5, a, b. The MMW image is captured under
94 GHz millimeter-wave. As seen from the images, a
concealed gun underneath the right person’s clothing.
The fused images are shown in Fig. 5, ¢—j, and
Fig. 5, i, j provide the relative better performances
with high contrast and brightness, which make it easy
to identify the gun. The other images still have the sim-
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Fig. 3. Detail of the enlarged areas:

a—j — the enlarged areas extracted from Fig. 2, a—j,
respectively
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Fig. 4. ‘Kayak’ AMB and CCD images and the
Jused images:

a — AMB image; b — CCD image; c—j the fused im-
ages using M 1- M8, respectively

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 6

b

d
v
h

J

Fig. 5. ‘Gun” MMW and visible images and the
fused images:
a — MMW image; b — visible image; c—j the fused
images using M 1—MS$, respectively

ilar poor characteristics as in the first and second ex-
periments.

To provide quantitative comparison of different fu-
sion methods, the following image quality metrics are
used in this paper: 1) standard deviation (SD), average
gradient (AQG), spatial frequency (SF) and information
entropy (IE) are used to evaluate the spatial quality of
the fused image; 2) correlation coefficient (CC), aver-
age error (AE) and mutual information (MI) are used
to evaluate the relativity or difference between the
fused image and one informative source image; 3) fea-

153




IHOOPMALIWHI TEXHONOTIT, CUCTEMHUN AHANI3 TA KEPYBAHHSA

tured mutual information (FMI) [8], structural simi-
larity image metric (SSIM) [9] and quality metric
based on gradient (QAB/F) [10] are used to measure
the degree of information transferred from the source
images to the fused image. In addition, to measure the
computational complexity of the fusion methods, the
runtime (in seconds) of the corresponding Matlab fu-
sion procedures is adopted as one fusion criterion,
which is acquired by averaging the results of 10 times
fusion procedure. Generally speaking, the larger the
metrics values are, the better the fusion performance
is, except for AE and the runtime.

The performance results of the three experiments
are listed in Tables 1, 2, 3, respectively, where the best
values are indicated in bold. As seen from the tables,
there are two values shown in bold for each criterion
because this paper refers to two proposed fusion meth-
ods. And according to the previous discussion of visual
effect, M1 and M2 provide the poor fusion perfor-
mance, so the corresponding data are not displayed in

the tables. In the aspects of SD, CC, AE, AG, MI,
SSIM and QAB/F metrics, the comparative perfor-
mance of all the fusion methods is stable, and the two
proposed fusion methods provide the best quality (the
two methods have roughly the same performance). On
the other hand, in the aspects of SF, IE and FMI met-
rics, despite the poor values occasionally, the two pro-
posed methods still provide the best quality with larger
probability. In the aspect of runtime metric, the DWT
based fusion method is with the best values, and M7,
one of the proposed methods, is with the second best
values. The runtimes of M8 procedure are approxi-
mately the two times of that of M7, which results from
the more blocks divided from the images and more
computations to cost.

Overall, the fusion framework can provide the rela-
tively perfect performance.

Conclusion. In this paper, a simple, effective and
fast fusion framework using the basic-BCSS and the
sliding-BCSS in spatial domain is proposed. Motivat-

Table 1
Quantitative results of fusion performance of the first ‘quad’ experiment
Method SD AG SF IE CcC AE MI FMI SSIM | QAB/F | runtime
M3 0.0919 | 0.0296 | 0.0490 | 6.0317 | 0.7033 | 0.1282 1.0211 0.9190 | 0.7682 | 0.5290 | 0.0891
M4 0.0952 | 0.0307 | 0.0488 | 6.0780 | 0.7193 | 0.1284 1.1198 | 0.9210 | 0.7867 | 0.6062 0.3013
M5 0.0908 | 0.0292 | 0.0482 | 6.0054 | 0.7057 | 0.1281 1.0833 | 0.9211 | 0.7778 | 0.5588 | 147.4756
M6 0.0903 | 0.0291 | 0.0482 | 6.0018 | 0.7063 | 0.1280 1.0915 | 0.9209 | 0.7778 | 0.5525 | 6.9346
M7 0.1411 | 0.0479 | 0.0508 | 6.7898 | 0.8425 | 0.0138 | 4.3262 | 0.9163 | 0.9428 | 0.7002 | 0.2023
M8 0.1409 | 0.0479 | 0.0533 | 6.7835 | 0.8455 | 0.0135 | 4.3263 | 0.9157 | 0.9429 | 0.7002 | 0.4375
Table 2
Quantitative results of fusion performance of the second ‘kayak’ experiment
Method SD AG SF IE CC AE MI FMI SSIM | QAB/F | runtime
M3 0.1317 0.0474 | 0.0501 | 6.9531 | 0.6906 | 0.0898 | 0.7922 | 0.8797 | 0.8050 | 0.5816 | 0.0739
M4 0.1335 | 0.0481 | 0.0498 | 6.9620 | 0.6928 | 0.0905 | 0.8601 | 0.8843 | 0.8168 | 0.6389 | 0.2494
M5 0.1297 | 0.0466 | 0.0484 | 6.9281 | 0.6943 | 0.0890 | 0.8289 | 0.8826 | 0.8197 | 0.6080 | 121.5679
M6 0.1293 | 0.0465 | 0.0484 | 6.9241 | 0.6940 | 0.0889 | 0.8285 | 0.8818 | 0.8183 | 0.6015 | 5.9640
M7 0.1692 | 0.0617 | 0.0516 | 7.2599 | 0.7212 | 0.0452 | 3.4752 | 0.8820 | 0.8209 | 0.6704 | 0.1785
M8 0.1687 | 0.0615 | 0.0509 | 7.2501 | 0.7208 | 0.0453 | 3.4798 | 0.8867 | 0.8253 | 0.6730 | 0.3624
Table 3
Quantitative results of fusion performance of the third ‘gun’ experiment
Method SD AG SF IE CC AE MI FMI SSIM | QAB/F | runtime
M3 0.1113 0.0433 | 0.1374 | 5.8432 | 0.6999 | 0.0835 | 0.4082 | 0.7990 | 0.3262 | 0.5906 | 0.0160
M4 0.1115 0.0435 | 0.1349 | 5.7846 | 0.7234 | 0.0809 | 0.4635 | 0.8063 | 0.3395 | 0.6471 | 0.0305
M5 0.1076 | 0.0421 | 0.1323 | 5.8564 | 0.7133 | 0.0814 | 0.4419 | 0.8058 | 0.3489 | 0.6302 | 24.2515
M6 0.1072 | 0.0419 | 0.1329 | 5.8626 | 0.7121 0.0815 | 0.4399 | 0.8064 | 0.3499 | 0.6252 | 0.8689
M7 0.1461 | 0.0557 | 0.1315 4.3700 | 0.7485 | 0.0806 | 1.1523 | 0.8152 | 0.3845 | 0.7408 | 0.0862
M8 0.1458 | 0.0556 | 0.1322 | 4.3734 | 0.7488 | 0.0807 | 1.1580 | 0.8203 | 0.3800 | 0.7297 | 0.1221
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ed by the real-time requirement of surveillance appli-
cations and the superiority of low sampling basic-BC-
SS technique is firstly investigated, and then a modi-
fied version, namely sliding-BCSS, is put forward.
The fusion framework mainly adopts the idea of selec-
tion scheme which is widely used in a fusion process.
The experiments are performed on three pairs of sur-
veillance images. Compared with traditional SA, PCA,
DWT, SIDWT, NSCT and NSSCT based fusion me-
thods; the fusion framework provides the relatively
perfect performance with high contrast and brightness
in visual effect and better values in quantitative crite-
ria. Moreover, the fusion framework has low computa-
tional complexity, and it has a certain practical mean-
ing for real-time surveillance applications.
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Meta. 3 MmeTor0 BUpILIEHHSI MPOOAEMU 3JUTTS
300pakeHb CIOCTEPEXKEeHHS B JAaHiii poOOTi mpono-
HYETbHCSI MPOCTUI Ta €(EKTUBHUMN (PperiMBOPK 3JIUT-
TSI 3 BUKOPUCTaHHSIM OJIOUHOTO CTUCHEHHSI BUMIpIO-
BaHb (BCSS), mo ckimamaeTbest 3 TBOX METOMIB CHH-
Te3y 3 BUKOpUcTaHHsSIM 6a3oBoro BCSS i koB3aiouoro
BCSS BinnosinHo.

Metoauka. 3a nepeBaru HU3bKOI YaCTOTH AUC-
KpeTu3allii Ta HU3bKO1 BUMipIOBaJIbHOI CKJIaJHOCTI, B
00pOOLIi CUTHAJIIB LIMPOKO BUKOPUCTOBYETHCS TE€O-
pis ctuckyBaHHs BUMipiB (CS). OCHOBHUIA arOpUTM
BCSS npencrasiisie co6o10 6a30BUii BapiaHT 0J104HO-
ro CS, B dkoMy BUXiHE 300pa>k€HHSI PO3iISETHCS
Ha okpeMi 6;10ku, a koB3arounii BCSS € monudiko-
BaHOIO Bepciero 6azoBoro BCSS, 3anponoHoBaHOro
paHililie, B IKOMY 300paKeHHsI TiIUThCSl HA HEBEJIUKI
KOB3aro4i OJIOKM AJISI KOXXHOTO ITiKCelasI 3 BIOITOBig-
HuM Binctyrnom. OcHOBHaA ines ppeiiMBOpKa 3ITUTTS
rnoisirae 'y BUOOpPI OJIOKIB YU ITKCENiB 3 BEIUKOIO
L2-HopMmoio BCSS pesynbraTiB BUMipioBaHb PO3Ii-
JIEHUX OJIOKiB y MPOCTOPOBiii 001aCTi.

PesyabraTn. @peiiMBOPK 3JIUTTSI IIPOTECTOBAHO
Ha TPbOX IMapax 300pakeHb y BilTiHKaX Ciporo, y Tomy
yucii iHbpauepBOHOMY Ta BUAUMOMY 300paKeHHSIX,
MiJTiMETPOBOMY Ta BUAMMOMY 300pakeHHSIX, i MpOBe-
JIeHe TOPiBHSIHHS 3 JAeKiJIbKOMa TpaauLiiHUMU Me-
TomaMM cHHTe3y. EKcIiepuMeHTallbHI pe3yIbTaT! 10~
Ka3yIoTh, IO 3aIlIPONIOHOBAHUI (DPEUMBOPK 3TUTTSI
MOXe OTHOYACHO 3HAYHO MOKPAIIUTHU SIKiCTh 3JTUTTS
Ta WBUIKICTb.

HaykoBa HoOBHM3HA. VYIeplile 3alpoOIIOHOBAaHO
npocTuit Ta epeKTUBHUN DpPeiiMBOPK 3JIUTTS 3 BU-
kopuctaHHsiMm BCSS y npoctopogiii oonacri.

ITpakTuyna 3HayumicTh. Pe3ynbrar mae mpak-
TUYHE 3HAYSHHSI JUTSI BiZICOCITIOCTEPEKEHHSI B PEKUMI
peajbHOro yacy.

KumouoBi cioBa: 31umms 306pascens, npocmo-
posa obaacmo, cnocmepedicentsi, IHppauepsoHuil,
6104He CMUCKYBAHHS GUMIPDIOBAHDb, PENCUM pPeanb-
HO20 uacy

IHenb. C nenbio pelieHus: MpoOaeMbl CIUSIHUS
n3o0paxkeHuil HaOJIIoAeHWsI B TaHHOU paboTe mpen-
naraercst TpocToit u 3(p@EKTUBHBIN (peliMBOPK
CJIUSIHUSI C MCTOJIb30BaHUEeM OJIOYHOTO CXKaTusl M3-
mepeHuii (BCSS), KoTophblii COCTOUT U3 ABYX METO-
JIOB CMHTe3a ¢ ucrnojab3oBaHueM O6azoBoro BCSS u
ckonb3sero BCSS cooTBeTCTBEHHO.

Metoauka. [1pu nepeBece HU3KOM YaCTOTHI IHC-
KpeTU3allui U HU3KOW BBIYUCIUTEIBHON CIIOKHO-
CTH, B 00pabOTKE CHUTHAJIOB IIMPOKO MCITOJIB3YeTCS
Teopus cxkatus ndmepeHuii (CS). OcHOBHOIT anro-
putMm BCSS mipencraBnsger co6oii 6a30BBIN BapuaHT
o6mouHoro CS, B KOTOPOM MCXOAHOE M300pakeHUe
pazaenseTcs Ha OTAeJbHBbIC OJIOKM, a CKOJb3SIIUIA
BCSS gaBnsgercs moguduumpoBaHHO Bepcueil 6azo-
Boro BCSS, npenjioxkeHHOro paHee, B KOTOPOM M30-
OpaxXeHue NeJUTCsl Ha HEOOJIbIIKE CKOJIb3SII1e 010~
KM JJI1 KaXKIOTO IMUKCEJSI ¢ COOTBETCTBYIOIINM OT-
cryroM. OcHOBHag uaes (ppeiiMBOpKa CIUSTHUS 3a-
KJII0YaeTcsl B BbIOOpe OJJOKOB UJIU MUKCEIOB ¢ O0Ib-
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IHOOPMALINHI TEXHONOTII, CACTEMHUA AHANI3 TA KEPYBAHHA

mwoit L2-nopmoit BCSS pesynbraToB u3MepeHUM
pa3aeeHHbIX OJIOKOB B IPOCTPAHCTBEHHOM 00JIaCTH.
Pesynabrarsl. OpeiiMBOPK CIUSHUS TIPOTECTUPO-
BaH Ha TpeX Mmapax u300paxeHui B OTTEHKaX Ceporo,
B TOM uuciie "H(GPAKPACHOM U BUAUMOM M300paxe-
HUSIX, MAJJIMMETPOBOM U BUIUMOM U300PaXKECHUSIX,
U TIPOBENEHO CpaBHEHME C HECKOJbKUMU TPaTUIU-
OHHBIMM METOAMU CHUHTEe3a. DKCIIEPUMEHTAIbHbIE
pe3yibrathl  MOKa3blBalOT, YTO  MpeiaraeMblil
(bpeliMBOpK CIUSTHUSI MOXET OMHOBPEMEHHO 3HAYU-
TEJIbHO YIYYIIUTh KAa4eCTBO CIUSTHUS U CKOPOCTb.
Hayunas HoBu3Ha. BriepBble mpemyioxeH mpo-
cToil U 2D deKTUBHBIA DPEUMBOPK CIUSIHUSI C UC-

156

noab3oBaHueM BCSS B mpocTpaHCTBeHHOIT o0ia-
CTH.

IIpakTHYecKass 3HAYMMOCTh. Pe3ynbrar mmeer
MpaKTUIECKOe 3HAYCHME IJIs BUIOCOHAOIONCHUS B
pEeXMMeE peaTbHOTO BPEMEHMU.

KimoueBble cioBa: ciausHue u300padceHuUil,
npocmpaHcmeeHHnast obaacms, HabawdeHue, UH-
@dpakpacHslil, 6a04HOe cocamue UMepeHull, pe-
HCUM PEeanbHO20 8peMeHU
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